scholarly journals EVALUATION OF CERES-MAIZE MODEL FOR HYBRID MAIZE (Zea mays L.) PRODUCTION

2019 ◽  
Vol 13 (1) ◽  
pp. 96-110
Author(s):  
Amied Ali ◽  
Bashrat Ali

The trial was conducted at Agronomic Research farm, University of Sargodha during spring growing season, 2015, to calibrate and evaluate CERES-Maize model for simulating the impact of different sowing time on maize crop. The experiment was laid out in split plot design having three replications, keeping planting dates (25th Feb, 6thMar and 14thMar) in main plots and hybrids i.e. (DK-9108, DK-6525 and DK-6142) in the sub plots. The Calibration of CSM-CERES-Maize model showed the best possible closeness between simulated and observed days to flowering and physiological maturity, leaf area index (LAI), Total dry matter (TDM), and grain yield with % error of 4.0, -1.5, 0.41, 0.07, 0.14 and 0.3% , respectively, when maize hybrid H1 (DK- 6142) was sown at firstsowing date (25th Feb). DSSAT,CERES- Maize model predicted the phenological traits like anthesis and maturity phase. Number of days to anthesis and maturity simulated by model were lesser to the observed values, where as, simulated grain yield was higher as compared to observed data for all the three cultivars. Model calculated the close similarity between experimental and computer-generated values for leaf area index.

2020 ◽  
Vol 19 ◽  
pp. 10
Author(s):  
ELISA DE ALMEIDA GOLLO ◽  
ADROALDO DIAS ROBAINA ◽  
MARCIA XAVIER PEITER ◽  
ENIO MARCHESAN ◽  
ROBSON GIACOMELI ◽  
...  

The raised seedbed implantation system and the use of surfaceirrigation can be important practices to enable rotation with rice and ensure theexpression of the productive potential of maize in lowland areas. The purpose ofthis work was to evaluate the use of implantation systems and surface irrigationon agronomic characteristics and grain yield of maize crop in lowland areas.Two experiments were conducted in the experimental lowland area of theFederal University of Santa Maria – UFSM, during the 2014/15 crop season.The experiments consisted in the use of implantation systems with and withoutraised seedbeds and surface irrigation. The evaluated characteristics were plantheight, shoot dry mass, leaf area index, yield components and grain yield. Plantheight, leaf area index and shoot dry mass are higher when maize is grown inraised seedbeds in lowland areas. The raised seedbed system can be consideredan efficient way to improve drainage in the cultivation area, resulting in a highergrain yield. The use of irrigation during periods of water deficit, in the criticalperiod of crop growth, increases the grain yield of maize grown in lowland areas.


2020 ◽  
Vol 19 ◽  
pp. 10
Author(s):  
ELISA DE ALMEIDA GOLLO ◽  
ADROALDO DIAS ROBAINA ◽  
MARCIA XAVIER PEITER ◽  
ENIO MARCHESAN ◽  
ROBSON GIACOMELI ◽  
...  

The raised seedbed implantation system and the use of surfaceirrigation can be important practices to enable rotation with rice and ensure the expression of the productive potential of maize in lowland areas. The purpose of this work was to evaluate the use of implantation systems and surface irrigation on agronomic characteristics and grain yield of maize crop in lowland areas. Two experiments were conducted in the experimental lowland area of the Federal University of Santa Maria – UFSM, during the 2014/15 crop season. The experiments consisted in the use of implantation systems with and without raised seedbeds and surface irrigation. The evaluated characteristics were plant height, shoot dry mass, leaf area index, yield components and grain yield. Plant height, leaf area index and shoot dry mass are higher when maize is grown in raised seedbeds in lowland areas. The raised seedbed system can be considered an efficient way to improve drainage in the cultivation area, resulting in a higher grain yield. The use of irrigation during periods of water deficit, in the critical period of crop growth, increases the grain yield of maize grown in lowland areas.


2021 ◽  
Vol 12 (5) ◽  
pp. 594-602
Author(s):  
L. Rana ◽  
◽  
H. Banerjee ◽  
D. Mazumdar ◽  
S. Sarkar ◽  
...  

The field experiments were conducted at farmer’s field, Madandanga village under Chakdaha Block of Nadia district in West Bengal during rabi season 2014-15 and 2015-16. Treatments were distributed in split-factorial design, with three varieties (P ‘3533’, P ‘3396’, P ‘30V92’) in the main plot and three planting density (55,555, 66,666, 83,333 plants ha-1) × three sowing dates (November 20, November 30, December 10) combinations in the sub-plots, replicated thrice. Irrespective of planting density and sowing date, the variety ‘P30V92’ produced the highest yield, followed by ‘P3396’ and ‘P3533’. The significantly highest grain and stover yield was obtained in high density planting (83,333 plants ha-1), accounting 44.2 and 39.6% more than low planting density (55,555 plants ha-1), respectively. The maximum grain and stover yields were obtained from Nov. 20 sown plants; being 7.71 and 11.95% more than the grain yield derived from late sown (Dec. 10) plants. A correlation study showed that among the growth and yield components, leaf area index (0.96) and shelling percentage (0.91) exhibited highly positive direct effects on the grain yield of hybrid maize. However, other growth attributes, namely P uptake (0.88), K uptake (0.86) and plant height (0.81) exerted comparatively low positive direct effects on the grain yield of hybrid maize. Further, the standard regression equation revealed a significant relationship of shelling percentage (p≤0.01), leaf area index (p≤0.01) and uptake of P (p≤0.05) with grain yield.


2021 ◽  
pp. 16-34
Author(s):  
Amanullah Amanullah ◽  
Asif Iqbal ◽  
Asim Muhammad ◽  
Abdel Rahman Altawaha ◽  
Azizullah Shah ◽  
...  

Phosphorus (P) unavailability and lack of organic matter in calcareous soils in semiarid climates are the major reasons for low crop productivity. This field experiment was conducted at the Agronomy Research Farm of The University of Agriculture Peshawar, during the summer of 2015 to investigate the impact of plant residues (PR) (faba bean, garlic and paper mulberry residues) and phosphorous sources [(60 and 120kg ha-1) from single super phosphate (SSP) and poultry manure (PM)] with (+) and without (-) phosphate solubilizing bacteria (PSB) on the phenological development, growth and biomass yield of hybrid maize “CS-200”. Among the PR, application of faba bean residue was found to delay phenological development (days to tasseling, silking and physiological maturity), improved growth (taller plants, higher leaf area per plant and leaf area index) and produced the highest biomass yield (faba bean>garlic>paper mulberry residues). Application of P at the rate of 120kg ha-1 from the inorganic source (SSP) was more beneficial in terms of better growth and higher biomass yield (120-SSP≥120-PM>60-SSP>60-PM kg P ha-1). The plots with (+) PSB showed enhanced phenological development, produced significantly taller plants with higher leaf area per plant and leaf area index and produced the highest biomass yield. On the basis of these results we concluded that the application of faba bean residues, phosphorus at the rate of 120kg ha-1 either from organic or inorganic sources with the inoculation of seed with PSB improved the growth and total biomass of hybrid maize in the study area.


2021 ◽  
Vol 13 (8) ◽  
pp. 1427
Author(s):  
Kasturi Devi Kanniah ◽  
Chuen Siang Kang ◽  
Sahadev Sharma ◽  
A. Aldrie Amir

Mangrove is classified as an important ecosystem along the shorelines of tropical and subtropical landmasses, which are being degraded at an alarming rate despite numerous international treaties having been agreed. Iskandar Malaysia (IM) is a fast-growing economic region in southern Peninsular Malaysia, where three Ramsar Sites are located. Since the beginning of the 21st century (2000–2019), a total loss of 2907.29 ha of mangrove area has been estimated based on medium-high resolution remote sensing data. This corresponds to an annual loss rate of 1.12%, which is higher than the world mangrove depletion rate. The causes of mangrove loss were identified as land conversion to urban, plantations, and aquaculture activities, where large mangrove areas were shattered into many smaller patches. Fragmentation analysis over the mangrove area shows a reduction in the mean patch size (from 105 ha to 27 ha) and an increase in the number of mangrove patches (130 to 402), edge, and shape complexity, where smaller and isolated mangrove patches were found to be related to the rapid development of IM region. The Moderate Resolution Imaging Spectro-radiometer (MODIS) Leaf Area Index (LAI) and Gross Primary Productivity (GPP) products were used to inspect the impact of fragmentation on the mangrove ecosystem process. The mean LAI and GPP of mangrove areas that had not undergone any land cover changes over the years showed an increase from 3.03 to 3.55 (LAI) and 5.81 g C m−2 to 6.73 g C m−2 (GPP), highlighting the ability of the mangrove forest to assimilate CO2 when it is not disturbed. Similarly, GPP also increased over the gained areas (from 1.88 g C m−2 to 2.78 g C m−2). Meanwhile, areas that lost mangroves, but replaced them with oil palm, had decreased mean LAI from 2.99 to 2.62. In fragmented mangrove patches an increase in GPP was recorded, and this could be due to the smaller patches (<9 ha) and their edge effects where abundance of solar radiation along the edges of the patches may increase productivity. The impact on GPP due to fragmentation is found to rely on the type of land transformation and patch characteristics (size, edge, and shape complexity). The preservation of mangrove forests in a rapidly developing region such as IM is vital to ensure ecosystem, ecology, environment, and biodiversity conservation, in addition to providing economical revenue and supporting human activities.


2017 ◽  
Vol 14 (2) ◽  
pp. 155-160
Author(s):  
MAR Sharif ◽  
MZ Haque ◽  
MHK Howlader ◽  
MJ Hossain

The experiment was conducted at the field laboratory of the Patuakhali Science and Technology University, Patuakhali, Bangladesh during the period from November, 2011 to March 2012 under the tidal Floodplain region to find out optimum sowing time for the selected three cultivars (BARI Sharisha-15, BINA Sharisha-5 and BARI Sharisha-9). There were four sowing dates viz. 30 November, 15 December, 30 December and 15 January. Significant variations due to different sowing dates were observed in plant height, total dry matter, leaf area index, number of siliqua plant-1, seeds silique-1, 1000-grain weight, grain yield and HI. Results showed that the highest grain yield (1.73 t ha-1) was obtained from the first sowing (30 November) with BINA Sharisha-5 and it was significantly different from the yields of all other combination.J. Bangladesh Agril. Univ. 14(2): 155-160, December 2016


1982 ◽  
Vol 18 (1) ◽  
pp. 93-100 ◽  
Author(s):  
S. U. Remison ◽  
E. O. Lucas

SUMMARYTwo maize cvs, FARZ 23 and FARZ 25, were grown at three densities (37,000, 53,000 and 80,000 plants/ha) in 1979 and 1980. Leaf area index (LAI) increased with increase in plant population and was at a maximum at mid-silk. Grain yield was highest at 53,000 plants/ha. There was no relation between LAI and grain yield but there was a positive correlation between LAI and total dry matter yield.


2021 ◽  
Vol 34 (4) ◽  
pp. 780-790
Author(s):  
PAULO VINICIUS DEMENECK VIEIRA ◽  
PAULO SÉRGIO LOURENÇO DE FREITAS ◽  
ANDRÉ LUIZ BISCAIA RIBEIRO DA SILVA ◽  
ANA CLAUDIA SOSSAI SOUZA ◽  
JULIANA MARQUES VORONIAK

ABSTRACT Sorghum is a commonly grown plant in the Central-West region of Brazil as a second crop; however, it is grown almost exclusively as a second crop after maize in the state of Paraná (South region). The growth of sorghum crops is an option for areas or times in which the growth of maize crops can be risky. Thus, the objective of this work was to evaluate the agronomic characteristics of eight sorghum hybrids (ADV-123, ADV-114, 1G100, 50A10, 1G244, 50A40, 50A50, and 1G282) grown in three sowing times in two agricultural years: 2014 (February 20, March 02, and March 03) and 2015 (February 09, February 19, and March 01), and four maize hybrids in 2014 (DKB-330-Pro, P-3431-HX, Formula-TL, and AG-9010-Pro) and five maize hybrids in 2015 (DKB-330-Pro, P-3431-HX, Formula-TL, DKB-275-Pro, and DKB-290-Pro), in the same sowing times used for sorghum. A randomized complete block experimental design with a split-plot factorial arrangement was used, with the sowing times in the plots and the hybrids in the sub-plots. The variables evaluated were: number of days from sowing to flowering, leaf area index, 1,000-grain weight, grain yield, number of spikelets per panicle, for the sorghum crop; and number of rows per ear and number of grains per row, for the maize crop. The comparison between the two crops showed that the sorghum maintained higher production stability in the different sowing times.


Author(s):  
Wen-Ying Wu ◽  
Zong-Liang Yang ◽  
Michael Barlage

AbstractTexas is subject to severe droughts, including the record-breaking one in 2011. To investigate the critical hydrometeorological processes during drought, we use a land surface model, Noah-MP, to simulate water availability and investigate the causes of the record drought. We conduct a series of experiments with runoff schemes, vegetation phenology, and plant rooting depth. Observation-based terrestrial water storage, evapotranspiration, runoff, and leaf area index are used to compare with results from the model. Overall, the results suggest that using different parameterizations can influence the modeled water availability, especially during drought. The drought-induced vegetation responses not only interact with water availability but also affect the ground temperature. Our evaluation shows that Noah-MP with a groundwater scheme produces a better temporal relationship in terrestrial water storage compared with observations. Leaf area index from dynamic vegetation is better simulated in wet years than dry years. Reduction of positive biases in runoff and reduction of negative biases in evapotranspiration are found in simulations with groundwater, dynamic vegetation, and deeper rooting zone depth. Multi-parameterization experiments show the uncertainties of drought monitoring and provide a mechanistic understanding of disparities in dry anomalies.


Sign in / Sign up

Export Citation Format

Share Document