scholarly journals Ergosterol Peroxide and Stigmasterol from The Stembark of Aglaia simplicifolia (Meliaceae) and Their Cytotoxic against HeLa Cervical Cancer Cell Lines

2021 ◽  
Vol 1 (1) ◽  
pp. 46-51
Author(s):  
Nunung Kurniasih ◽  
Asep Supriadin ◽  
Desi Harneti ◽  
Rizky Abdulah ◽  
Mohamad Nurul Azmi bin Mohamad Taib ◽  
...  

Two steroid compounds, ergosterol peroxide (1) and stigmasterol (2) have been isolated from the stembark of Aglaia simplicifolia belong to Meliaceae family. The chemical structures of 1 and 2 were identified based on spectroscopic evidence including UV, IR, 1D NMR, 2D NMR as well as mass spectra and by comparison with those previously reported spectra data. Both compounds were evaluated for their cytotoxic effects against cervical cancer HeLa cells in vitro. Compounds 1 and 2 showed cytotoxicity activity against HeLa cervical cancer cells with IC50 values of 0.80 and 26.42 µM, respectively.

2021 ◽  
Vol 7 (1) ◽  
pp. 46-51
Author(s):  
Nunung Kurniasih ◽  
Asep Supriadin ◽  
Desi Harneti ◽  
Rizky Abdulah ◽  
Mohamad Nurul Azmi bin Mohamad Taib ◽  
...  

Two steroid compounds, ergosterol peroxide (1) and stigmasterol (2) have been isolated from the stembark of Aglaia simplicifolia belong to Meliaceae family. The chemical structures of 1 and 2 were identified based on spectroscopic evidence including UV, IR, 1D NMR, 2D NMR as well as mass spectra and by comparison with those previously reported spectra data. Both compounds were evaluated for their cytotoxic effects against cervical cancer HeLa cells in vitro. Compounds 1 and 2 showed cytotoxicity activity against HeLa cervical cancer cells with IC50 values of 0.80 and 26.42 µM, respectively.


Marine Drugs ◽  
2019 ◽  
Vol 17 (2) ◽  
pp. 100
Author(s):  
Sherif Ebada ◽  
Werner Müller ◽  
Wenhan Lin ◽  
Peter Proksch

A new acylic jasplakinolide congener (2), another acyclic derivative requiring revision (4), together with two jasplakinolide derivatives including the parent compound jasplakinolide (1) were isolated from the Indonesian marine sponge Jaspis splendens. The chemical structures of the new and known compounds were unambiguously elucidated based on HRESIMS and exhaustive 1D and 2D NMR spectral analysis as well as a comparison of their NMR data with those of jasplakinolide (1). The isolated jasplakinolides inhibited the growth of mouse lymphoma (L5178Y) cells in vitro with IC50 values in the low micromolar to nanomolar range.


2019 ◽  
Vol 5 (2) ◽  
pp. 143-148
Author(s):  
Dewa Gede Katja ◽  
Desi Harneti ◽  
Tri Mayanti ◽  
Nurlelasari Nurlelasari ◽  
Rani Maharani ◽  
...  

In the course of our continuing search for anticancer compounds from Chisocheton species, three steroids, stigmast-5-en-3β-ol (1), stigmast-5-en-3β-ol-3-O-β-D-glucopyranoside (2) and stigmast-5,22-dien-3β-ol-3-O-β-D-glucopyranoside (3), were obtained from the stembark of Chisocheton celebicus. The structures of compound 1-3 were identified with spectroscopic data including IR, 1D-NMR, 2D-NMR and TOF-MS, as well as by comparing with those spectral data previously. Compounds 1-3, were evaluated for their cytotoxic effects against P-388 murine leukemia cells and displayed the cytotoxicity activity with IC50 values of 12.45 ± 0.050, 52.27 ± 0.031 and 62.52 ± 0.076 µg/mL, respectively.


Molekul ◽  
2017 ◽  
Vol 12 (1) ◽  
pp. 1 ◽  
Author(s):  
Dewa Gede Katja ◽  
Kindi Farabi ◽  
Nurlelasari Nurlelasari ◽  
Desi Harneti ◽  
Euis Julaeha ◽  
...  

Three cytotoxic steroids, stigmasterol (1), stigmast-5-en-3b-ol (2) and b-sitosterol-3-O-acetate (3) were isolated from the stem bark of Chisocheton cumingianus. The chemical structures of those compounds were identified based on spectroscopic data and by comparison with those data previously reported. All of the compounds isolated were evaluated for their cytotoxic effects against P-388 murine leukemia cells in vitro. Compounds 1-3 showed cytotoxicity activity against P-388 murine leukemia cells with IC50values of 12.4, 60.8, and ˃ 100 mg/mL, respectively.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 1009
Author(s):  
Farida Larit ◽  
Khaled M. Elokely ◽  
Manal A. Nael ◽  
Samira Benyahia ◽  
Francisco León ◽  
...  

The in vitro activity of L. donovani (promastigotes, axenic amastigotes and intracellular amastigotes in THP1 cells) and T. brucei, from the fractions obtained from the hydroalcoholic extract of the aerial part of Hypericum afrum and the isolated compounds, has been evaluated. The chloroform, ethyl acetate and n-butanol extracts showed significant antitrypanosomal activity towards T. brucei, with IC50 values of 12.35, 13.53 and 12.93 µg/mL and with IC90 values of 14.94, 19.31 and 18.67 µg/mL, respectively. The phytochemical investigation of the fractions led to the isolation and identification of quercetin (1), myricitrin (2), biapigenin (3), myricetin (4), hyperoside (5), myricetin-3-O-β-d-galactopyranoside (6) and myricetin-3’-O-β-d-glucopyranoside (7). Myricetin-3’-O-β-d-glucopyranoside (7) has been isolated for the first time from this genus. The chemical structures were elucidated by using comprehensive one- and two-dimensional nuclear magnetic resonance (1D and 2D NMR) spectroscopic data, as well as high-resolution electrospray ionization mass spectrometry (HR-ESI–MS). These compounds have also been evaluated for their antiprotozoal activity. Quercetin (1) and myricetin (4) showed noteworthy activity against T. brucei, with IC50 and IC90 values of 7.52 and 5.71 µM, and 9.76 and 7.97 µM, respectively. The T. brucei hexokinase (TbHK1) enzyme was further explored as a potential target of quercetin and myricetin, using molecular modeling studies. This proposed mechanism assists in the exploration of new candidates for novel antitrypanosomal drugs.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Chunyang Li ◽  
Shuangqing Yang ◽  
Huaqing Ma ◽  
Mengjia Ruan ◽  
Luyan Fang ◽  
...  

Abstract Background Cervical cancer is a type of the most common gynecology tumor in women of the whole world. Accumulating data have shown that icariin (ICA), a natural compound, has anti-cancer activity in different cancers, including cervical cancer. The study aimed to reveal the antitumor effects and the possible underlying mechanism of ICA in U14 tumor-bearing mice and SiHa cells. Methods The antitumor effects of ICA were investigated in vivo and in vitro. The expression of TLR4/MyD88/NF-κB and Wnt/β-catenin signaling pathways were evaluated. Results We found that ICA significantly suppressed tumor tissue growth and SiHa cells viability in a dose-dependent manner. Also, ICA enhanced the anti-tumor humoral immunity in vivo. Moreover, ICA significantly improved the composition of the microbiota in mice models. Additionally, the results clarified that ICA significantly inhibited the migration, invasion capacity, and expression levels of TGF-β1, TNF-α, IL-6, IL-17A, IL-10 in SiHa cells. Meanwhile, ICA was revealed to promote the apoptosis of cervical cancer cells by down-regulating Ki67, survivin, Bcl-2, c-Myc, and up-regulating P16, P53, Bax levels in vivo and in vitro. For the part of mechanism exploration, we showed that ICA inhibits the inflammation, proliferation, migration, and invasion, as well as promotes apoptosis and immunity in cervical cancer through impairment of TLR4/MyD88/NF-κB and Wnt/β-catenin pathways. Conclusions Taken together, ICA could be a potential supplementary agent for cervical cancer treatment.


2021 ◽  
Author(s):  
Huilin Zhang ◽  
Ping He ◽  
Qing Zhou ◽  
Yan Lu ◽  
Bingjian Lu

Abstract BackgroundsCSN5, a member of Cop9 signalosome, is essential for protein neddylation. It has been supposed to serve as an oncogene in some cancers. However, the role of CSN5 has not been investigated in cervical cancer yet.MethodsData from TCGA cohorts and GEO dataset was analyzed to examine the expression profile of CSN5 in cervical cancers. The role of CSN5 on cervical cancer cell proliferation was investigated in cervical cancer cell lines, Siha and Hela, through CSN5 knockdown via CRISPR-CAS9. Western blot was used to detect the effect of CSN5 knockdown and overexpression. CCK8, clone formation assay and cell cycle assay were also employed. Besides, the role CSN5 knockdown in vivo was evaluated by xenograft tumor model. Moreover, MLN4924 was applied in Siha and Hela with CSN5 overexpression.ResultsWe found that downregulation of CSN5 in Siha and Hela cells inhibited cell proliferation in vitro and in vivo, and the inhibitory effects were largely rescued by CSN5 overexpression. Moreover, deletion of CSN5 caused cell cycle arrest rather than inducing apoptosis. Importantly, CSN5 overexpression confers resistance to the anti-cancer effects of MLN4924 (pevonedistat) in cervical cancer cells.ConclusionsOur findings demonstrated that CSN5 functions as an oncogene in cervical cancers and may serve as a potential indicator for predicting the effects of MLN4924 treatment in the future.


2021 ◽  
Vol 25 ◽  
Author(s):  
Na Liu ◽  
Meina Song ◽  
Yulin Sun ◽  
Fengying Yang ◽  
Haina Yu ◽  
...  

: One new eudesmane sesquiterpene (1) and one new chromolaevane sesquiterpene (2), along with 19 known compounds, have been isolated from the invasive plant Solidago canadensis. Their structures were established by spectroscopic means including 1D/2D-NMR and HR-ESIMS analyses. Compounds 10 and 12, in combination with fluconazole, showed significant activity in an in vitro synergistic antifungal assay against Candida albicans, with FIC values of <0.15625 and <0.28125, respectively. Meanwhile, the allelopathic effects of these sesquiterpenes on Arabidopsis seed germination were also tested. Compounds 5, 7, 17 and 18 retarded the seed germination of Arabidopsis with IC50 values ranging from 9.1 to 41 μg/mL, while other compounds showed no obvious inhibitory effects.


2021 ◽  
Vol 12 (4) ◽  
pp. 045006
Author(s):  
Thoko Malinga ◽  
Tukayi Kudanga ◽  
Londiwe Simphiwe Mbatha

Abstract Bimetallic nanosized delivery systems are attracting a lot of research interest as alternatives to monometallic delivery systems. This study evaluated the ability of bimetallic selenium silver chitosan pegylated folic acid targeted nanoparticles (SeAgChPEGFA NPs) to deliver doxorubicin (DOX) in cervical cancer cells. Comparison studies using monometallic selenium chitosan pegylated folic acid (SeChPEGFA NPs) targeted NPs and free DOX were also conducted. The prepared NPs and their drug nanocomplexes were characterised morphologically and physico-chemically. Drug binding and releasing studies were conducted under a simulated environment in vitro. The cytotoxicity and apoptosis studies were studied using the 3-[(4, 5-dimethylthiazol-2-yl)−2, 5-diphenyl tetrazolium bromide] (MTT) assay and the dual dye staining. The findings revealed that the bimetallic SeAgChPEGFA NPs displayed better colloidal stability, superior physico-chemical qualities, and higher binding abilities in comparison with monometallic SeChPEGFA NPs. In addition, the SeAgChPEGFA NPs showed the pH-triggered controlled drug release and cell-specific cytotoxicity. These findings suggest that the bimetallic NPs are superior delivery systems when compared to their monometallic NPs and free drug counterparts, thus, setting a platform for further in vivo examination.


2018 ◽  
Vol 18 (1) ◽  
pp. 52-54
Author(s):  
Sothing Vashum ◽  
Rabi Raja Singh I ◽  
Saikat Das ◽  
Mohammed Azharuddin KO ◽  
Prabhakaran Vasudevan

AbstractAimDNA double-strand break (DSB) results in the phosphorylation of the protein, H.2AX histone. In this study, the effect of radiotherapy and chemotherapy on DNA DSB in cervical cancer cells is analysed by the phosphorylation of the protein.MethodsThe cervical cancer cells (HeLa cells) were cultured and exposed to ionising radiation. Radiation sensitivity was measured by clonogenic survival fraction after exposing to ionising radiation. Since the phosphorylation of H.2AX declines with time, the DNA damage was quantified at different time points: 1 hour, 3 hours and 1 week after exposed to the radiation. The analysis of γ-H.2AX was done by Western-blot technique. The protein expression was observed at different dose of radiation and combination of both radiation and paclitaxel.ResultsLow-dose hypersensitivity was observed. By 1 week after radiation at 0·5, 0·8 and 2 Gy, there was no expression of phosphorylated H.2AX. Previous experiments on the expression of phosphorylated H.2AX (γ-H.2AX) in terms of foci analysis was found to peak at 1 hour and subsequently decline with time. In cells treated with the DNA damaging agents, the expression of phosphorylated H.2AX decreases in a dose-dependent manner when treated with radiation alone. However, when combined with paclitaxel, at 0·5 Gy, the expression peaked and reduces at 0·8 Gy and slightly elevated at 2 Gy.FindingsIn this study, the peak phosphorylation was observed at 3 hour post irradiation indicating that DSBs are still left unrepaired.


Sign in / Sign up

Export Citation Format

Share Document