scholarly journals ID: 1059 Biomimetic release of growth factor from porous beads for enhanced bone regeneration

2017 ◽  
Vol 4 (S) ◽  
pp. 140
Author(s):  
Ho Yong Kim ◽  
June Ho Byun ◽  
Jin Ho Lee ◽  
Se Heang Oh

Three dimensional scaffolds which allow sustained release of bioactive molecules have been considered as an essential component for enhanced bone regeneration. In recent years, combination system of various bioactive molecules has been extensively investigated to reconstruct more sophisticated bone regeneration. It is well-known that if the certain bioactive molecules with appropriate dose and stimulation periods are applied to bone defect, the physiological processes in bone regeneration may be accelerated. However, many studies were not concerned stimulation periods of bioactive molecules occurred in body during new bone formation because of absence of proper release system for the bioactive molecules. In this study, we selected three bioactive molecules (PDGF-BB, VEGF, BMP-2) which widely used for effective bone healing, and developed a porous bead with leaf-stacked structure which can allow controlled release of growth factors by concentration and composition of Pluronics. The morphology, each growth factor release profiles, migration (boyden chamber assay), angiogenic differentiation (tube formation, ICC, and RT-PCR), osteogenic differentiation (ALP activity, calcium deposition, alizarin/ALP staining, ICC, and RT-PCR) of human periosteum-derived cells and new bone formation of rat calvarial defect model by controlled release of growth factors were estimated

2017 ◽  
Vol 31 (7) ◽  
pp. 1049-1061 ◽  
Author(s):  
Tadahiro Takayama ◽  
Jisen Dai ◽  
Keita Tachi ◽  
Ryutaro Shohara ◽  
Hironori Kasai ◽  
...  

Stromal cell-derived factor-1 (SDF-1) is a cytokine that is important in stem and progenitor cell recruitment in tissue repair after injury. Regenerative procedures using collagen membranes (CMs) are presently well established in periodontal and implant dentistry. The objective of this study is to test the subsequent effects of the released SDF-1 from a CM on bone regeneration compared to platelet-derived growth factor (PDGF) in vitro and in vivo. For in vitro studies, cell proliferation, alkaline phosphatase activity, and osteoblastic differentiation marker genes were assessed after MC3T3-E1 mouse preosteoblasts were cultured with CMs containing factors. In vivo effects were investigated by placement of CMs containing SDF-1 or PDGF using a rat mandibular bone defect model. At 4 weeks after the surgery, the new bone formation was measured using micro-computed tomography (µCT) and histological analysis. The results of in vitro studies revealed that CM delivery of SDF-1 significantly induced cell proliferation, ALP activity, and gene expression of all osteogenic markers compared to the CM alone or control, similar to PDGF. Quantitative and qualitative µCT analysis for volume of new bone formation and the percentage of new bone area showed that SDF-1-treated groups significantly increased and accelerated bone regeneration compared to control and CM alone. The enhancement of bone formation in SDF-1-treated animals was dose-dependent and with levels similar to those measured with PDGF. These results suggest that a CM with SDF-1 may be a great candidate for growth factor delivery that could be a substitute for PDGF in clinical procedures where bone regeneration is necessary.


2021 ◽  
Author(s):  
Ho Yong Kim ◽  
Jin-Ho Park ◽  
Min Ji Kim ◽  
Jin Ho Lee ◽  
Se Heang Oh ◽  
...  

It is accepted that a biomimetic supply of signaling molecules during bone regeneration can provide an appropriate environment for accelerated new bone formation. In this study, we developed a growth...


Medicina ◽  
2021 ◽  
Vol 57 (1) ◽  
pp. 60
Author(s):  
Daniele De Santis ◽  
Federico Gelpi ◽  
Giuseppe Verlato ◽  
Umberto Luciano ◽  
Lorena Torroni ◽  
...  

Background and Objective: Guided bone regeneration allows new bone formation in anatomical sites showing defects preventing implant rehabilitation. Material and Methods: The present case series reported the outcomes of five patients treated with customized titanium meshes manufactured with a digital workflow for achieving bone regeneration at future implant sites. A significant gain in both width and thickness was achieved for all patients. Results: From a radiographic point of view (CBTC), satisfactory results were reached both in horizontal and vertical defects. An average horizontal gain of 3.6 ± 0.8 mm and a vertical gain of 5.2 ± 1.1 mm. Conclusions: The findings from this study suggest that customized titanium meshes represent a valid method to pursue guided bone regeneration in horizontal, vertical or combined defects. Particular attention must be paid by the surgeon in the packaging of the flap according to a correct method called the “poncho” technique in order to reduce the most frequent complication that is the exposure of the mesh even if a partial exposure of one mesh does not compromise the final outcome of both the reconstruction and the healing of the implants.


2018 ◽  
pp. 6778-6787 ◽  
Author(s):  
Pablo S Reineri ◽  
María S. Coria ◽  
María G. Barrionuevo ◽  
Olegario Hernández ◽  
Santiago Callejas ◽  
...  

Introduction. Growth and follicular maturation involve transformations of various components of the follicle, such as the oocyte, granulosa and techa cells. Several growth factors, including differentiation growth factor 9 (GDF9), bone morphogenic protein 15 (BMP15) and basic fibroblast growth factor (FGF2) are important for follicular development and oocyte maturation, by its ability to increase the proliferation of granulosa, techa cells and the ovarian stroma. Objetive. Evaluate mRNA expression of GDF9, BMP15, FGF2 and their main receptors, transforming growth factor beta receptor 1 (TGFβ-R1), bone morphogenetic protein receptor, type IB (BMPR-IB) and fibroblast growth factor receptor 2 (FGFR2) in bovine follicular cells. Materials and methods. Total RNA was isolated from pooled samples of oocytes (OOs), cumulus cells (CCs) of cumulus oocyte complexes (COCs) and follicular cell pellets (PCs) of 70 ovaries obtained from 96 beef heifers, collected at a local abattoir. The expression pattern of growth factors and their receptors in follicular bovine cells was evaluated by reverse transcriptase polymerase chain reaction (RT-PCR). Results. The mRNA transcripts encoding GDF9, BMP15, FGF2, TGFβ-R1, BMPR-IB and FGFR2 genes were detected, by RT-PCR, in all studied cells. This is the first time that the expression of TGFβ-R1 and BMPR-IB receptors is reported in bovine oocytes. Conclusions. The presence of growth factors and receptor transcripts in the studied cells indicate that these factors could act as paracrine and autocrine regulators of folliculogenesis.


2008 ◽  
Vol 1 ◽  
pp. CMAMD.S442
Author(s):  
Meredith A. Lakey ◽  
Michael J. Klein ◽  
Ona M. Faye-Petersen

Periosteal new bone formation (PNBF) is the means by which appositional bone growth normally takes place on the surfaces of compact bone. Alterations in the periosteal microenvironment trigger complex interactions between osteoblasts and endothelial cells to promote PNBF. Physiologic processes like mechanical stress result in normal PNBF; but, a variety of pathologic processes result in excessive PNBF. The production of sufficient bone to be detectable by conventional radiography is a common feature of diverse etiologies, including infection; inflammation; prostaglandin E2 administration for ductal-dependent congenital heart disease; metabolic and hormonal abnormalities; neoplasms; fracture repair; systemic hypoxia; and hypertrophic osteoarthropathy. While the clinical settings and distribution of affected bone sites in these conditions are different, the histopathology of the PNBF is essentially identical; so, it seems logical that a common pathway might mediate them all. By combining the observations and insights gained from osseous research and studying the clinical pathology of these diverse conditions, we constructed a comprehensive pathway to explain PNBF. In doing so, it seems likely that Vascular Endothelial Growth Factor (VEGF) is the most likely common mediator of the pathways that lead to PNBF.


Materials ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1613
Author(s):  
Eunhye Jang ◽  
Ja-Youn Lee ◽  
Eun-Young Lee ◽  
Hyun Seok

The aim of this study was to evaluate the bone regeneration effect of recombinant human bone morphogenetic protein-2 (rhBMP-2) on a subperiosteal bone graft in a rat model. A subperiosteal space was made on the rat calvarium, and anorganic bovine bone (ABB), ABB/low bone morphogenetic protein (BMP) (5 µg), and ABB/high BMP (50 µg) were grafted as subperiosteal bone grafts. The new bone formation parameters of bone volume (BV), bone mineral density (BMD), trabecular thickness (TbTh), and trabecular spacing (TbSp) were evaluated by microcomputed tomography (µ-CT), and a histomorphometric analysis was performed to evaluate the new bone formation area. The expression of osteogenic markers, such as bone sialoprotein (BSP) and osteocalcin, were evaluated by immunohistochemistry (IHC). The ABB/high BMP group showed significantly higher BV than the ABB/low BMP (p = 0.004) and control groups (p = 0.000) and higher TbTh than the control group (p = 0.000). The ABB/low BMP group showed significantly higher BV, BMD, and TbTh than the control group (p = 0.002, 0.042, and 0.000, respectively). The histomorphometry showed significantly higher bone formation in the ABB/low and high BMP groups than in the control group (p = 0.000). IHC showed a high expression of BSP and osteocalcin in the ABB/low and high BMP groups. Subperiosteal bone grafts with ABB and rhBMP-2 have not been studied. In our study, we confirmed that rhBMP-2 contributes to new bone formation in a subperiosteal bone graft with ABB.


2012 ◽  
Vol 529-530 ◽  
pp. 300-303 ◽  
Author(s):  
R.P. Félix Lanao ◽  
J.W.M. Hoekstra ◽  
Joop G.C. Wolke ◽  
Sander C.G. Leeuwenburgh ◽  
A.S. Plachokova ◽  
...  

Periodontitis is one of the most common inflammatory diseases, which can lead to early tooth loss. The conventional treatment of periodontitis is to arrest the disease progression. Most reconstructive procedures involve application of bone substitutes, barrier membranes or a combination of both into the bony defects. Calcium phosphate cements (CPCs) are the predominant type of bone substitute material used for reasons of injectability and hence perfect filling potential for bone defects. Recently, injectable apatitic CPCs demonstrated to be more rapidly degradable when combined with poly (lactic-co-glycolic) acid (PLGA) microspheres. Further, PLGA microspheres can be used as a delivery vehicle for growth factors. In this study, the performance of injectable CPCs as a bone substitute material for alveolar bone defects created in Beagle dogs was evaluated. Four CPC-formulations were generated by incorporating hollow or dense PLGA microspheres, either or not loaded with the growth factors (platelet derived growth factor (PDGF) and insulin-like growth factor (IGF). Implantation period was 8 weeks. Bone formation was based on histological and histomorphometrical evaluation. The results demonstrated that filling alveolar bone defects with CPC-dense PLGA revealed significant more bone formation compared to CPC-hollow PLGA either or not loaded with IGF and PDGF. In summary, we conclude that injectable CPC-dense PLGA composites proved to be the most suitable material for a potential use as off the shelf material due to its good biocompatibility, enhanced degradability and subsequent bone formation.


2020 ◽  
Vol 8 (4) ◽  
pp. 1127-1136 ◽  
Author(s):  
Nooshin Zandi ◽  
Ebrahim Mostafavi ◽  
Mohammad Ali Shokrgozar ◽  
Elnaz Tamjid ◽  
Thomas J. Webster ◽  
...  

Growth factor delivery is often challenging due to their short half-life, low stability, and rapid deactivation. Here, we engineered novel biomimetic proteoglycan nanocarriers for the immobilization and controlled release of growth factors.


Sign in / Sign up

Export Citation Format

Share Document