scholarly journals In vitro antimicrobial activity of hydrosol from Litsea cubeba (Lour.) Pers. against Helicobacter pylori and Candida albicans

2020 ◽  
Vol 7 (6) ◽  
pp. 3819-3828
Author(s):  
Tran Thanh Hung ◽  
Pham Thu Trang ◽  
Hoang Viet ◽  
Nguyen Thi My Lan ◽  
Luong Thi My Ngan ◽  
...  

Introduction: Helicobacter pylori and Candida albicans are classified as the most common pathogenic agents in humans. H. pylori is responsible for gastroduodenal diseases and greatly associated with gastric carcinogenesis, while C. albicans is the main cause of fungal urinary tract, genital yeast, and fungal skin infections. The increasing appearance of drug-resistant strains of H. pylori and C. albicans has made the treatment of the infections more serious. Hydrosols from plant steam distillation have been traditionally used in medicine, cosmetics, and culinary uses. They have been recently suggested as antimicrobial agents owing to their safety and ability to reduce the potential of resistance. The aim of the present study is to assess antibacterial and antifungal activities of hydrosols extracted from the fresh fruits of Litsea cubeba against H. pylori and C. albicans. Methods: The L. cubeba fruit hydrosol was obtained by steam distillation method. Evaluation of the growth-inhibiting and microbicidal effects of the hydrosol towards the H. pylori ATCC 43504 and C. albicans ATCC 10231 was determined through MIC (minimal inhibitory concentration), MBC (minimal bactericidal concentration), and MFC (minimal fungicidal concentration) measurements using broth dilution assays. Compositions of the dissolved essential oil (dEO) from the hydrosol were analyzed by GC-MS (gas chromatography-mass spectrometry). Results: The results indicated that the L. cubeba fruit hydrosol exhibited strong antimicrobial ability towards the bacterium H. pylori (MIC of 10%, MBC of 30%) and the yeast C. albicans (MIC of 10%, MFC of 40%). The cells of H. pylori and C. albicans were killed completely after 24 and 18 hours of treatment with 30% and 40% of the hydrosol, respectively. The major constituents of the dEO were geranial (32.92%), neral (27.12%), p-menthan-8-yl acetate (8.45%), 2-cyclopropyl-2-methylspiro[2.2]pentane-1-carboxylic acid (8.09%), linalool (4.24%), and methyl heptenone (4.15%). Conclusion: The results of the study suggest that L. cubeba fruit hydrosols could be used as potent natural antibacterial and antifungal preparations in the global effort to discover safe alternatives to toxic antimicrobial agents.  

Pathogens ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 489 ◽  
Author(s):  
Kimberly Sánchez-Alonzo ◽  
Cristian Parra-Sepúlveda ◽  
Samuel Vega ◽  
Humberto Bernasconi ◽  
Víctor L. Campos ◽  
...  

Yeasts can adapt to a wide range of pH fluctuations (2 to 10), while Helicobacter pylori, a facultative intracellular bacterium, can adapt to a range from pH 6 to 8. This work analyzed if H. pylori J99 can protect itself from acidic pH by entering into Candida albicans ATCC 90028. Growth curves were determined for H. pylori and C. albicans at pH 3, 4, and 7. Both microorganisms were co-incubated at the same pH values, and the presence of intra-yeast bacteria was evaluated. Intra-yeast bacteria-like bodies were detected using wet mounting, and intra-yeast binding of anti-H. pylori antibodies was detected using immunofluorescence. The presence of the H. pylori rDNA 16S gene in total DNA from yeasts was demonstrated after PCR amplification. H. pylori showed larger death percentages at pH 3 and 4 than at pH 7. On the contrary, the viability of the yeast was not affected by any of the pHs evaluated. H. pylori entered into C. albicans at all the pH values assayed but to a greater extent at unfavorable pH values (pH 3 or 4, p = 0.014 and p = 0.001, respectively). In conclusion, it is possible to suggest that H. pylori can shelter itself within C. albicans under unfavorable pH conditions.


1997 ◽  
Vol 11 (4) ◽  
pp. 298-300 ◽  
Author(s):  
Linda M Best ◽  
David JM Haldane ◽  
Gregory S Bezanson ◽  
Sander JO Veldhuyzen

Resistance to antimicrobial agents is a major determinant of the efficacy of regimens to eradicateHelicobacter pylori. Clarithromycin (CLA) has become one of the most commonly used antibiotics for treatment ofH pyloriinfection. In this study, the rate of primary resistance to CLA inH pyloriisolated from patients was determined. One hundred sixty-two strains were recovered from patients before treatment. Strains were grown and inoculated onto Mueller-Hinton agar with 7% sheep blood. CLA epsilometer gradient agar diffusion test (E test) strips were used to test for susceptibility. Appropriate control organisms were tested to validate the assay. Plates were incubated at 37°C in a microaerophilic atmosphere for up to five days. E test results were easy to interpret. Strains were considered resistant if the minimum inhibitory concentration (MIC) was 2 µg/mL or greater. Three strains were resistant (two strains with MIC 8 µg/mL and one strain with MIC 12 µg/mL), and 159 strains were sensitive (MICs ranged from less than 0.016 to 0.38 µg/mL). Ninety per cent of the strains had MICs of 0.023 µg/mL. Primary resistance was 1.8%. These susceptibility data support the use of CLA for the treatment ofH pyloriin the Nova Scotia population.


2011 ◽  
Vol 55 (9) ◽  
pp. 4261-4266 ◽  
Author(s):  
Tatsuo Yamamoto ◽  
Tomomi Takano ◽  
Wataru Higuchi ◽  
Akihito Nishiyama ◽  
Ikue Taneike ◽  
...  

ABSTRACTA total of 293 strains ofHelicobacter pylori, including strains resistant to levofloxacin, clarithromycin, metronidazole, or amoxicillin, were examined forin vitrosusceptibility to 10 antimicrobial agents. Among these agents, sitafloxacin (a fluoroquinolone) showed the greatest activity (MIC90, 0.06 μg/ml), with high bactericidal activity and synergy in sitafloxacin-lansoprazole (a proton pump inhibitor) combination. In a Mongolian gerbil model with aH. pyloriATCC 43504 challenge, marked eradication effects were observed at ≥1 mg/kg for sitafloxacin, ≥10 mg/kg for levofloxacin, and ≥10 mg/kg for lansoprazole, reflecting MIC levels for each agent (0.008, 0.25, and 2 μg/ml, respectively). The therapeutic rates were 83.3% for the sitafloxacin (0.3 mg/kg)-lansoprazole (2.5 mg/kg) combination and 0% for either sitafloxacin or lansoprazole alone. The maximum serum concentration (Cmax) of sitafloxacin was 0.080 ± 0.054 μg/ml at 30 min, when orally administered at 1 mg/kg. The simultaneous administration of lansoprazole resulted in no difference. In the resistance development assay, MICs of levofloxacin increased 64- to 256-fold withgyrAmutations (Ala88Pro and Asn87Lys), while MICs of sitafloxacin only up to 16-fold with the Asn87Lys mutation. The data suggest that sitafloxacin exhibited superior anti-H. pyloriactivity with low rates of resistance developmentin vitroand that, reflecting highin vitroactivities, sitafloxacin-lansoprazole combination exhibited strong therapeutic effects in Mongolian gerbils with aCmaxof sitafloxacin that was 10-fold higher than the MIC value at a 1-mg/kg administration.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 681 ◽  
Author(s):  
Andrés González ◽  
Javier Casado ◽  
Eduardo Chueca ◽  
Sandra Salillas ◽  
Adrián Velázquez-Campoy ◽  
...  

Antibiotic resistance is a major cause of the increasing failures in the current eradication therapies against Helicobacter pylori. In this scenario, repurposing drugs could be a valuable strategy to fast-track novel antimicrobial agents. In the present study, we analyzed the inhibitory capability of 1,4-dihydropyridine (DHP) antihypertensive drugs on the essential function of the H. pylori response regulator HsrA and investigated both the in vitro antimicrobial activities and the in vivo efficacy of DHP treatments against H. pylori. Six different commercially available and highly prescribed DHP drugs—namely, Nifedipine, Nicardipine, Nisoldipine, Nimodipine, Nitrendipine, and Lercanidipine—noticeably inhibited the DNA binding activity of HsrA and exhibited potent bactericidal activities against both metronidazole- and clarithromycin-resistant strains of H. pylori, with minimal inhibitory concentration (MIC) values in the range of 4 to 32 mg/L. The dynamics of the decline in the bacterial counts at 2 × MIC appeared to be correlated with the lipophilicity of the drugs, suggesting different translocation efficiencies of DHPs across the bacterial membrane. Oral treatments with 100 mg/kg/day of marketed formulations of Nimodipine or Nitrendipine in combination with omeprazole significantly reduced the H. pylori gastric colonization in mice. The results presented here support a novel therapeutic solution for treatment of antibiotic-resistant H. pylori infections.


2012 ◽  
Vol 3 (1) ◽  
pp. 9 ◽  
Author(s):  
Ehsan Mirkamandar ◽  
Mohammad Reza Shakibaie ◽  
Saeed Adeli ◽  
Mitra Mehrabani ◽  
Mohammad Mehdi Hayatbakhsh ◽  
...  

The aim of this study was to evaluate the <em>in vitro</em> antimicrobial activity of a methanolic extract of <em>Salvadora persica</em> solution on <em>Helicobacter pylori</em> isolated from duodenal ulcer. Over 22 strains of H. pylori were isolated from duodenal ulcer from August 2010 to June 2011. The <em>S. persica</em> stem was purchased from a local herb market and finely powdered. Extraction was performed with 60% methanol using a soxhlet extractor for 48 h until the solvent turned colorless while being incubated in an oven at 40°C for 48 h till dried. Dry powder was used to determine antimicrobial activity by the agar ditch method. Minimum inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of the extract were determined by the agar dilution method. At concentrations of 10, 100, 200, 500 µg/mL, no zone of inhibition around the ditches was observed while a clear zone of inhibition (12 mm) was detected at 1000 µg/mL concentration for all the isolates. The best antimicrobial activity was observed at MIC 1000 µg/mL (P≤0.05). Furthermore, 10 out of 22 isolates were inhibited at 750 µg/mL of the extract. The MBC results showed that at a concentration of 1000 µg/mL all cells were dead while at a concentration of 750 µg/mL of<em> S. persica </em>a few <em>H. pylori</em> cells were still able to form colonies on Brucella agar supplemented with sheep red blood cells and antibiotics. From the above results it can be concluded that high concentration of S.persica could inhibit the growth of H. pylori and MIC and MBC were similar at that concentration.


Author(s):  
A. R. Crooker ◽  
W. G. Kraft ◽  
T. L. Beard ◽  
M. C. Myers

Helicobacter pylori is a microaerophilic, gram-negative bacterium found in the upper gastrointestinal tract of humans. There is strong evidence that H. pylori is important in the etiology of gastritis; the bacterium may also be a major predisposing cause of peptic ulceration. On the gastric mucosa, the organism exists as a spiral form with one to seven sheathed flagella at one (usually) or both poles. Short spirals were seen in the first successful culture of the organism in 1983. In 1984, Marshall and Warren reported a coccoid form in older cultures. Since that time, other workers have observed rod and coccal forms in vitro; coccoid forms predominate in cultures 3-7 days old. We sought to examine the growth cycle of H. pylori in prolonged culture and the mode of coccoid body formation.


2020 ◽  
Vol 24 (19) ◽  
pp. 2272-2282
Author(s):  
Vu Ngoc Toan ◽  
Nguyen Minh Tri ◽  
Nguyen Dinh Thanh

Several 6- and 7-alkoxy-2-oxo-2H-chromene-4-carbaldehydes were prepared from corresponding alkyl ethers of 6- and 7-hydroxy-4-methyl-2-oxo-2H-chromen-2-ones by oxidation using selenium dioxide. 6- and 7-Alkoxy-4-methyl-2H-chromenes were obtained with yields of 57-85%. Corresponding 4-carbaldehyde derivatives were prepared with yields of 41-67%. Thiosemicarbazones of these aldehydes with D-galactose moiety were synthesized by reaction of these aldehydes with N-(2,3,4,6-tetra-O-acetyl-β-Dgalactopyranosyl) thiosemicarbazide with yields of 62-74%. These thiosemicarbazones were screened for their antibacterial and antifungal activities in vitro against bacteria, such as Staphylococcus aureus, Escherichia coli, and fungi, such as Aspergillus niger, Candida albicans. Several compounds exhibited strong inhibitory activity with MIC values of 0.78- 1.56 μM, including 8a (against S. aureus, E. coli, and C. albicans), 8d (against E. coli and A. niger), 9a (against S. aureus), and 9c (against S. aureus and C. albicans).


2019 ◽  
Vol 19 (5) ◽  
pp. 376-382 ◽  
Author(s):  
Sachin Jangra ◽  
Gayathri Purushothaman ◽  
Kapil Juvale ◽  
Srimadhavi Ravi ◽  
Aishwarya Menon ◽  
...  

Background & Objective:Helicobacter pylori infection is one of the primary causes of peptic ulcer followed by gastric cancer in the world population. Due to increased occurrences of multi-drug resistance to the currently available antibiotics, there is an urgent need for a new class of drugs against H. pylori. Inosine 5′-monophosphate dehydrogenase (IMPDH), a metabolic enzyme plays a significant role in cell proliferation and cell growth. It catalyses guanine nucleotide synthesis. IMPDH enzyme has been exploited as a target for antiviral, anticancer and immunosuppressive drugs. Recently, bacterial IMPDH has been studied as a potential target for treating bacterial infections. Differences in the structural and kinetic parameters of the eukaryotic and prokaryotic IMPDH make it possible to target bacterial enzyme selectively.Methods:In the current work, we have synthesised and studied the effect of substituted 3-aryldiazenyl indoles on Helicobacter pylori IMPDH (HpIMPDH) activity. The synthesised molecules were examined for their inhibitory potential against recombinant HpIMPDH.Results:In this study, compounds 1 and 2 were found to be the most potent inhibitors amongst the database with IC50 of 0.8 ± 0.02µM and 1 ± 0.03 µM, respectively.Conclusion:When compared to the most potent known HpIMPDH inhibitor molecule C91, 1 was only four-fold less potent and can be a good lead for further development of selective and potent inhibitors of HpIMPDH.


2019 ◽  
Vol 16 (4) ◽  
pp. 392-400 ◽  
Author(s):  
Göknil Pelin Coşkun ◽  
Teodora Djikic ◽  
Sadık Kalaycı ◽  
Kemal Yelekçi ◽  
Fikrettin Şahin ◽  
...  

Background:The main factor for the prolongation of the ulcer treatment in the gastrointestinal system would be Helicobacter pylori infection, which can possibly lead to gastrointestinal cancer. Triple therapy is the treatment of choice by today&#039;s standards. However, observed resistance among the bacterial strains can make the situation even worse. Therefore, there is a need to discover new targeted antibacterial therapy in order to make success in the eradication of H. pylori infections.Methods:The targeted therapy rule is to identify the related macromolecules that are responsible for the survival of the bacteria. Thus, 2-[(2&#039;,4&#039;-difluoro-4-hydroxybiphenyl-3-yl)carbonyl]-N- (substituted)hydrazinocarbothioamide (3-13) and 5-(2&#039;,4&#039;-difluoro-4-hydroxybiphenyl-3-yl)-4- (substituted)-2,4-dihydro-3H-1,2,4-triazole-3-thiones (14-17) were synthesized and evaluated for antibacterial activity in vitro against H. pylori.Results:All of the tested compounds showed remarkable antibacterial activity compared to the standard drugs (Ornidazole, Metronidazole, Nitrimidazin and Clarithromycin). Compounds 4 and 13 showed activity as 2&#181;g/ml MIC value.Conclusion:In addition, we have investigated binding modes and energy of the compounds 4 and 13 on urease enzyme active by using the molecular docking tools.


Biology ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 426
Author(s):  
Kimberly Sánchez-Alonzo ◽  
Fabiola Silva-Mieres ◽  
Luciano Arellano-Arriagada ◽  
Cristian Parra-Sepúlveda ◽  
Humberto Bernasconi ◽  
...  

Helicobacter pylori, a Gram-negative bacterium, has as a natural niche the human gastric epithelium. This pathogen has been reported to enter into Candida yeast cells; however, factors triggering this endosymbiotic relationship remain unknown. The aim of this work was to evaluate in vitro if variations in nutrient concentration in the cultured medium trigger the internalization of H. pylori within Candida cells. We used H. pylori–Candida co-cultures in Brucella broth supplemented with 1%, 5% or 20% fetal bovine serum or in saline solution. Intra-yeast bacteria-like bodies (BLBs) were observed using optical microscopy, while intra-yeast BLBs were identified as H. pylori using FISH and PCR techniques. Intra-yeast H. pylori (BLBs) viability was confirmed using the LIVE/DEAD BacLight Bacterial Viability kit. Intra-yeast H. pylori was present in all combinations of bacteria–yeast strains co-cultured. However, the percentages of yeast cells harboring bacteria (Y-BLBs) varied according to nutrient concentrations and also were strain-dependent. In conclusion, reduced nutrients stresses H. pylori, promoting its entry into Candida cells. The starvation of both H. pylori and Candida strains reduced the percentages of Y-BLBs, suggesting that starving yeast cells may be less capable of harboring stressed H. pylori cells. Moreover, the endosymbiotic relationship between H. pylori and Candida is dependent on the strains co-cultured.


Sign in / Sign up

Export Citation Format

Share Document