Blood Volume Changes in Patients With Cystic Fibrosis

PEDIATRICS ◽  
1977 ◽  
Vol 59 (4) ◽  
pp. 588-594
Author(s):  
Amnon Rosenthal ◽  
Lawrence N. Button ◽  
Kon Taik Khaw

Simultaneous red blood cell (RBC) and plasma volume determinations were obtained in 16 patients with cystic fibrosis (CF) and moderately severe pulmonary involvement. Hypervolemia with an increase in both RBC and plasma volumes was observed. Changes in blood volume were marked when values were indexed by weight but less significant when indexed by height. Decreasing systemic arterial oxygen saturation was associated with a progressive increase in RBC mass, hematocrit value, and hemoglobin level and a decrease in mean corpuscular hemoglobin concentration. RBC and total blood volumes were highest in patients with cor pulmonale and congestive heart failure. However, the compensatory polycythemic response in patients with CF was inadequate when compared with the response to hypoxemia in patients with cyanotic congenital heart disease. The insufficient oxygen-carrying capacity may compromise tissue oxygen delivery and necessitate treatment.

1990 ◽  
Vol 68 (3) ◽  
pp. 1086-1091 ◽  
Author(s):  
J. S. Wyatt ◽  
M. Cope ◽  
D. T. Delpy ◽  
C. E. Richardson ◽  
A. D. Edwards ◽  
...  

Current methods for measuring cerebral blood volume (CBV) in newborn infants are unsatisfactory. A new method is described in which the effect of a small change (5-10%) in arterial oxygen saturation (SaO2) on cerebral oxyhemoglobin [HbO2] and deoxyhemoglobin [Hb] concentration is observed by near-infrared (NIR) spectroscopy. Previous experiments in which the NIR absorption characteristics of HbO2 and Hb and the pathlength of NIR light through the brain were defined allowed changes in [HbO2] and [Hb] to be quantified from the Beer-Lambert law. It is shown here that CBV can then be derived from the expression CBV = (delta[HbO2] - delta[Hb])/(2. delta SaO2.H.R.), where H is the large vessel total hemoglobin concentration and R to the cerebral-to-large vessel hematocrit ratio. Observations on 12 newborn infants with normal brains, born at 25-40 wk of gestation and aged 10-240 h, gave a mean value for CBV of 2.22 +/- 0.40 (SD) ml/100 g, whereas mean CBV was significantly higher 3.00 +/- 1.04 ml/100 g in 10 infants with brain injury born at 24 to 42 wk of gestation and aged 4-168 h (P less than 0.05).


2020 ◽  
Vol 120 (12) ◽  
pp. 2693-2704
Author(s):  
Erika Schagatay ◽  
Alexander Lunde ◽  
Simon Nilsson ◽  
Oscar Palm ◽  
Angelica Lodin-Sundström

Abstract Purpose Hypoxia and exercise are known to separately trigger spleen contraction, leading to release of stored erythrocytes. We studied spleen volume and hemoglobin concentration (Hb) during rest and exercise at three altitudes. Methods Eleven healthy lowlanders did a 5-min modified Harvard step test at 1370, 3700 and 4200 m altitude. Spleen volume was measured via ultrasonic imaging and capillary Hb with Hemocue during rest and after the step test, and arterial oxygen saturation (SaO2), heart rate (HR), expiratory CO2 (ETCO2) and respiratory rate (RR) across the test. Results Resting spleen volume was reduced with increasing altitude and further reduced with exercise at all altitudes. Mean (SE) baseline spleen volume at 1370 m was 252 (20) mL and after exercise, it was 199 (15) mL (P < 0.01). At 3700 m, baseline spleen volume was 231 (22) mL and after exercise 166 (12) mL (P < 0.05). At 4200 m baseline volume was 210 (23) mL and after exercise 172 (20) mL (P < 0.05). After 10 min, spleen volume increased to baseline at all altitudes (NS). Baseline Hb increased with altitude from 138.9 (6.1) g/L at 1370 m, to 141.2 (4.1) at 3700 m and 152.4 (4.0) at 4200 m (P < 0.01). At all altitudes Hb increased from baseline during exercise to 146.8 (5.7) g/L at 1370 m, 150.4 (3.8) g/L at 3700 m and 157.3 (3.8) g/L at 4200 m (all P < 0.05 from baseline). Hb had returned to baseline after 10 min rest at all altitudes (NS). The spleen-derived Hb elevation during exercise was smaller at 4200 m compared to 3700 m (P < 0.05). Cardiorespiratory variables were also affected by altitude during both rest and exercise. Conclusions The spleen contracts and mobilizes stored red blood cells during rest at high altitude and contracts further during exercise, to increase oxygen delivery to tissues during acute hypoxia. The attenuated Hb response to exercise at the highest altitude is likely due to the greater recruitment of the spleen reserve during rest, and that maximal spleen contraction is reached with exercise.


PEDIATRICS ◽  
1977 ◽  
Vol 59 (6) ◽  
pp. 919-926
Author(s):  
Amnon Rosenthal ◽  
Kon Taik Khaw ◽  
Harry Shwachman

A study of 35 patients with cystic fibrosis demonstrated that increasing severity of pulmonary involvement was associated with a mild but definite increase in erythrocyte 2,3-diphosphoglycerate (2,3-DPG) and a decrease in hemoglobin affinity for oxygen. The predominant regulators of 2,3-DPG were blood pH, cardiac output, and systemic oxygen transport. No significant relationship was observed between erythrocyte 2,3-DPG content and arterial oxygen tension. Hypophosphatemia may have prevented a greater increase in erythrocyte 2,3-DPG content. The inadequate increase in 2,3-DPG and consequent insufficient change in hemoglobin-oxygen affinity, coupled with an insufficient compensatory erythrocytic response, may adversely affect tissue oxygenation in patients with severe cystic fibrosis.


Blood ◽  
1951 ◽  
Vol 6 (7) ◽  
pp. 639-651 ◽  
Author(s):  
JEANNE C. BATEMAN

Abstract 1. Hematologic findings are reported in 33 patients with cancer, in 8 patients with arrested cancer and in 10 patients without cancer. 2. Blood volume was variable and seemed to bear no direct relation to the disease. Prolonged impaired alimentation due to dysphagia or apathy in 3 patients was associated with lower than expected blood volume. 3. Recalculation of total hemoglobin on the basis of expected normal blood volume demonstrates a reduction in hemoglobin concentration when blood volume is increased and conversely in an elevation of hemoglobin concentration when blood volume is reduced. 4. A marked increase above "normal" in blood volume was found in 3 patients who had received large amounts of stilbestrol. Withdrawal of drug in the 1 patient observed resulted in reversion toward normal values. 5. Testosterone increased body weight, total blood volume and total circulating hemoglobin in 3 patients without active cancer. In 2 patients with far advanced cancer there was increase in weight, in 1 there was increase in blood volume, but in both there was progressive decrease in total hemoglobin.


Blood ◽  
1956 ◽  
Vol 11 (12) ◽  
pp. 1077-1084 ◽  
Author(s):  
PETER PARE ◽  
LOUIS LOWENSTEIN

Abstract 1. An unusual case of absolute polycythemia associated with hypoxemia, probably resulting from abnormal function of the respiratory center has been presented. 2. The mechanism of development of this type of polycythemia has been discussed. 3. A classification of polycythemia on the basis of blood volume and arterial oxygen saturation has been suggested.


1984 ◽  
Vol 56 (1) ◽  
pp. 145-149 ◽  
Author(s):  
H. J. Green ◽  
J. A. Thomson ◽  
M. E. Ball ◽  
R. L. Hughson ◽  
M. E. Houston ◽  
...  

To investigate the role of high-intensity intermittent exercise on adaptations in blood volume and selected hematological measures, four male subjects aged 19–23 yr [peak O2 consumption (VO2max) = 53 ml X min-1 X kg-1] performed supramaximal (120% VO2max) cycle exercise on 3 consecutive days. Each exercise session consisted of intermittent work performed as bouts of 1-min work to 4-min rest until fatigue or until a maximum of 24 repetitions had been completed. Measurements on blood samples were made before the exercise period and 24 h after the last exercise session. Plasma volume (PV) estimated using 131I-human serum albumin increased by 11.6% (3,504 vs. 3,912 ml; P less than 0.05). Total blood volume (TBV) based on PV and hematocrit (Hct) values increased by 4.5% (5,798 vs. 6,059 ml; P less than 0.05), whereas red cell volume (RCV) decreased by 6.4% (2,294 vs. 2,147 ml; P less than 0.05). Measurements of hematological indices indicated significant reductions (P less than 0.05) in whole-blood Hct (39.7 vs. 35.5%), hemoglobin concentration (15.5 vs. 13.9 g/100 ml), hemoglobin content (897 vs. 839 g), and red blood cell count (5.15 vs. 4.55 X 10(6) X mm-3). The findings of this study suggest that exercise intensity is a major factor in promoting exercise-induced hypervolemia and that rapid elevations in PV can be induced early in training.


2021 ◽  
Vol 12 ◽  
Author(s):  
Frank Pernett ◽  
Felix Schagatay ◽  
Caroline Vildevi ◽  
Erika Schagatay

The spleen contracts progressively during moderate normobaric hypoxia exposure of 20 min, which elevates hemoglobin concentration (Hb). However, acute hypoxia exposure could be shorter and more severe when oxygen systems fail during, e.g., high-altitude sky diving, aircraft cabin pressure drop, balloon flights, extreme altitude climbing, and in some maladies. We aimed to evaluate the speed and magnitude of spleen contraction during short exposure to extreme eupneic hypoxia and its subsequent recovery on oxygen. Eight female and seven male volunteers were exposed to normobaric hypoxia (10% oxygen) for 10 min during sitting rest, followed by 10 min on 100% oxygen. Heart rate (HR), arterial oxygen saturation (SpO2), and mean arterial blood pressure (MAP) were measured continuously. The spleen was measured via ultrasonic imaging every minute for volume calculations, and venous blood samples were drawn before and after exposure for hemoglobin concentration (Hb). Mean (SD) spleen volume was 279 (115) mL before exposure, 219 (75) mL (21% reduction; P = 0.005) at 3 min of exposure, and 201 (93) mL after 10 min exposure to hypoxia (28% reduction; P &lt; 0.001). Hb was 138.8 (7.6) g·L−1 before and 142.9 (8.1) g·L−1 after 10 min of exposure (2.9% increase; P &lt; 0.001). SpO2 was 96.4 (1.7)% before exposure and 74.7 (8.4)% during the last minute of exposure (22.5% reduction; P &lt; 0.001). HR increased from 80 (14) to 90 (17) bpm during exposure (12% increase, P &lt; 0.05). MAP remained unchanged. After 10 min recovery on oxygen, values had been restored for spleen volume and Hb, while SpO2 was higher and HR lower compared with before hypoxia exposure. We concluded that acute normobaric hypoxia of only 10 min caused significant spleen volume contraction with Hb increase. This rapid spleen response, evident already after 3 min of exposure, could have a protective effect during sudden exposure to severe hypoxia.


2009 ◽  
Vol 107 (6) ◽  
pp. 1840-1846 ◽  
Author(s):  
Zeljko Dujic ◽  
Lovro Uglesic ◽  
Toni Breskovic ◽  
Zoran Valic ◽  
Karsten Heusser ◽  
...  

We investigated whether the involuntary breathing movements (IBM) during the struggle phase of breath holding, together with peripheral vasoconstriction and progressive hypercapnia, have a positive effect in maintaining cerebral blood volume. The central hemodynamics, arterial oxygen saturation, brain regional oxyhemoglobin (bHbO2), deoxyhemoglobin, and total hemoglobin changes and IBM were monitored during maximal dry breath holds in eight elite divers. The frequency of IBM increased (by ∼100%), and their duration decreased (∼30%), toward the end of the struggle phase, whereas the amplitude was unchanged (compared with the beginning of the struggle phase). In all subjects, a consistent increase in brain regional deoxyhemoglobin and total hemoglobin was also found during struggle phase, whereas bHbO2 changed biphasically: it initially increased until the middle of the struggle phase, with the subsequent relative decline at the end of the breath hold. Mean arterial pressure was elevated during the struggle phase, although there was no further rise in the peripheral resistance, suggesting unchanged peripheral vasoconstriction and implying the beneficial influence of the IBM on the cardiac output recovery (primarily by restoration of the stroke volume). The IBM-induced short-lasting, sudden increases in mean arterial pressure were followed by similar oscillations in bHbO2. These results suggest that an increase in the cerebral blood volume observed during the struggle phase of dry apnea is most likely caused by the IBM at the time of the hypercapnia-induced cerebral vasodilatation and peripheral vasoconstriction.


1976 ◽  
Vol 230 (2) ◽  
pp. 327-334 ◽  
Author(s):  
DH Horstman ◽  
M Gleser ◽  
J Delehunt

Maximal oxygen consumption (VO2 max) and muscle blood flow (Q max) were measured in an isolated gracilis muscle preparation before and after alteration in perfusion pressure (BP), arterial oxygen saturation (SaO2), and hemoglobin concentration (Hb). Q varied directly with BP and inversely with Hb (viscosity) but was unaffected by changes in arterial SaO2. VO2 max varied directly with oxygen delivery under all conditions. These results indicate that VO2 max is normally limited by oxygen delivery rather than any intrinsic limiting of oxygen consumption of the muscle.


1993 ◽  
Vol 264 (4) ◽  
pp. R687-R695 ◽  
Author(s):  
A. W. Pinder ◽  
A. W. Smits

Three general mechanisms have been proposed to explain rapid increases in red blood cell concentration in vertebrates in response to hypoxia: spleen emptying, red blood cell swelling, and decreases in plasma volume. We have experimentally tested these potential mechanisms for the hemoconcentration of red blood cells associated with hypoxemia in cold (10 degrees C), submerged bullfrogs. The mean increase of hematocrit was approximately 1.4-fold (the increase was highly variable between individual frogs) when arterial oxygen saturation was reduced from 80% to 8% by lowering ambient O2 partial pressure (PO2). The largest response was seen when arterial oxygen saturation was below 33% (a saturation that is not unusual in submerged amphibians). There was no difference between hematocrit increases during hypoxemia in spleen-ligated compared with sham-operated frogs submerged in hyperoxic, normoxic, and hypoxic water, suggesting that spleen emptying is not the primary mechanism. Increased hematocrit was not due to red blood cell swelling: mean corpuscular hemoglobin concentration increased slightly as hematocrit increased, indicating that red blood cells shrank slightly rather than swelling. Plasma volume, measured in a separate group of animals by dilution of 51Cr-labeled autologous red blood cells, decreased almost 50% during hypoxemia, closely correlated with a mean increase of 1.76-fold of hematocrit. We thus conclude that the hematocrit increase seen during hypoxemia in bullfrogs is caused by a loss of plasma volume. This has important implications for cardiovascular function, since blood viscosity, oxygen carrying capacity, and cardiac output are all affected by changes in plasma volume.


Sign in / Sign up

Export Citation Format

Share Document