scholarly journals Range of Pterostichus oblongopunctatus (Coleoptera, Carabidae) in conditions of global climate change

2019 ◽  
Vol 27 (1) ◽  
pp. 76-84 ◽  
Author(s):  
T. A. Avtaeva ◽  
R. A. Sukhodolskaya ◽  
A. V. Skripchinsky ◽  
V. V. Brygadyrenko

Using geodata technology, we conducted a bioclimatic modeling of the spatial distribution of the common palearctic ground beetle – Pterostichus oblongopunctatus (Fabricius, 1787). The range of comfort of the territories included in this species’ range was obtained. We used the data on 510 sampling points, obtained as a result of the authors’ field surveys and the data base of the GBIF global fund of biodiversity and 19 climatic parameters from the WorldClim open base and MaxEnt program. The results determined the factors which have the greatest impact on the current distribution of P. oblongopunctatus. The main climatic factors affecting the distribution of P. oblongopunctatus are average annual temperature, average 24-hour amplitude of temperature over each month, average temperature over the driest quarter, average temperature over the warmest quarter of the year, total of precipitations in the driest month of the year. We performed a prediction of possible change in the range by two scenarios (RCP 2.6 and RCP 8.5) for 2050 and 2070. Using QGIS program, we estimated the areas of the species’ range, and compared them. According to the scenario RCP 2.6, by 2050, the range of the species will contract due to decrease in the territories with moderately continental climate, and by 2070, a restoration of the range would take place, for according to this scenario, the average annual temperature stabilizes. According to the scenario RCP 8.5, the range will contract by 2050 and will continue to decrease by 2070, for the concentration of CO2 continues to increase along with increase in average annual temperature. Climate changes can affect the life cycle of the beetle, its life expectancy and activity over the season. With changes in temperature, eggs and larvae of P. oblongopunctatus can be more vulnerable.

2017 ◽  
pp. 149-155
Author(s):  
M.E. Daus ◽  
N.S. Loboda

Problem. Global climate changes, which are observed over the last decades, influencing the formation of modern hydrological regime of the Kuyalnik Liman. In the paper for the detection of major trends of these changes the natural climatic factors (temperature, precipitation) are evaluated. The purpose of investigation is assessment of changes in major climatic factors of flow formation, namely precipitation and air temperature for the year, warm and cold periods on the basis of meteorological stations data within the catchment the Kuyalnik Liman and adjacent areas during the period 1900-2012. Research methods are methods of statistical processing of the initial information. Analysis of changes in climatic factors was occurred on the base of comparing data before and after year 1989 (beginning of observations - 1988, 1989-2012). Main results. The average annual temperature for the period 1989-2012 on the all the weather stations are increased from 0,8°C (Rozdelnaya) to 1,1°C (Odessa, Lyubashevka) compared with the previous observational period (1951-1988). During the warm season - from April to October – on all the weather stations average temperature are increased on 0,7°C, on the station Odessa - on 1,0°C. In the period 1989-2012 from November to March on all the weather stations the average temperature are increased on 1,0 - 2,0°C (relative to the previous estimated range). On chronological graphs of average year temperatures, in the warm and cold seasons upward trend in air temperatures are marked. In the cold period transition in average temperatures from negative to positive means are eventuated. Data review on all the meteorological stations revealed that temperature trends for the year, warm and cold periods are characterized by statistically significant correlation coefficients. For the average annual precipitation for the period 1989-2012 statistically significant trends are not found. In the cold period reducing of the amounts of precipitation are dominated, in the warm period growth tendencies are observed. Conclusions. Trends in changes of climatic factors on the watershed the Kuyalnik Liman indicate the unfavorable conditions of the flow formation. Rising of air temperatures of cold season promote the thaws formation and reduce the discharge and volume of spring floods. Increasing of air temperatures of warm period led to growth of evaporation from the land surface, especially from water surface of reservoirs. These losses are not recompense by the increasing of precipitation. So, on the catchment the Kuyalnik Liman climatic conditions that reduce the water resources are formed.


Water ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 1962
Author(s):  
Zhilong Zhao ◽  
Yue Zhang ◽  
Zengzeng Hu ◽  
Xuanhua Nie

The alpine lakes on the Tibetan Plateau (TP) are indicators of climate change. The assessment of lake dynamics on the TP is an important component of global climate change research. With a focus on lakes in the 33° N zone of the central TP, this study investigates the temporal evolution patterns of the lake areas of different types of lakes, i.e., non-glacier-fed endorheic lakes and non-glacier-fed exorheic lakes, during 1988–2017, and examines their relationship with changes in climatic factors. From 1988 to 2017, two endorheic lakes (Lake Yagenco and Lake Zhamcomaqiong) in the study area expanded significantly, i.e., by more than 50%. Over the same period, two exorheic lakes within the study area also exhibited spatio-temporal variability: Lake Gaeencuonama increased by 5.48%, and the change in Lake Zhamuco was not significant. The 2000s was a period of rapid expansion of both the closed lakes (endorheic lakes) and open lakes (exorheic lakes) in the study area. However, the endorheic lakes maintained the increase in lake area after the period of rapid expansion, while the exorheic lakes decreased after significant expansion. During 1988–2017, the annual mean temperature significantly increased at a rate of 0.04 °C/a, while the annual precipitation slightly increased at a rate of 2.23 mm/a. Furthermore, the annual precipitation significantly increased at a rate of 14.28 mm/a during 1995–2008. The results of this study demonstrate that the change in precipitation was responsible for the observed changes in the lake areas of the two exorheic lakes within the study area, while the changes in the lake areas of the two endorheic lakes were more sensitive to the annual mean temperature between 1988 and 2017. Given the importance of lakes to the TP, these are not trivial issues, and we now need accelerated research based on long-term and continuous remote sensing data.


Author(s):  
Nikolaj Dobrzinskij ◽  
Algimantas Fedaravicius ◽  
Kestutis Pilkauskas ◽  
Egidijus Slizys

Relevance of the article is based on participation of armed forces in various operations and exercises, where reliability of machinery is one of the most important factors. Transportation of soldiers as well as completion of variety of tasks is ensured by properly functioning technical equipment. Reliability of military vehicles – armoured SISU E13TP Finnish built and HMMWV M1025 USA built were selected as the object of the article. Impact of climatic conditions on reliability of the vehicles exploited in southwestern part of the Atlantic continental forest area is researched by a case study of the vehicles exploitation under conditions of the climate of Lithuania. Reliability of military vehicles depends on a number of factors such as properties of the vehicles and external conditions of their operation. Their systems and mechanisms are influenced by a number of factors that cause different failures. Climatic conditions represent one of the factors of operating load which is directly dependent on the climate zone. Therefore, assessment of the reliability is started with the analysis of climatic factors affecting operating conditions of the vehicles. Relationship between the impact of climatic factors and failure flow of the vehicles is presented and discussed.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Yusuke Yokoyama ◽  
Anthony Purcell

AbstractPast sea-level change represents the large-scale state of global climate, reflecting the waxing and waning of global ice sheets and the corresponding effect on ocean volume. Recent developments in sampling and analytical methods enable us to more precisely reconstruct past sea-level changes using geological indicators dated by radiometric methods. However, ice-volume changes alone cannot wholly account for these observations of local, relative sea-level change because of various geophysical factors including glacio-hydro-isostatic adjustments (GIA). The mechanisms behind GIA cannot be ignored when reconstructing global ice volume, yet they remain poorly understood within the general sea-level community. In this paper, various geophysical factors affecting sea-level observations are discussed and the details and impacts of these processes on estimates of past ice volumes are introduced.


2020 ◽  
Vol 13 (1) ◽  
pp. 127
Author(s):  
Jay Mar D. Quevedo ◽  
Yuta Uchiyama ◽  
Kevin Muhamad Lukman ◽  
Ryo Kohsaka

Blue carbon ecosystem (BCE) initiatives in the Coral Triangle Region (CTR) are increasing due to their amplified recognition in mitigating global climate change. Although transdisciplinary approaches in the “blue carbon” discourse and collaborative actions are gaining momentum in the international and national arenas, more work is still needed at the local level. The study pursues how BCE initiatives permeate through the local communities in the Philippines and Indonesia, as part of CTR. Using perception surveys, the coastal residents from Busuanga, Philippines, and Karimunjawa, Indonesia were interviewed on their awareness, utilization, perceived threats, and management strategies for BCEs. Potential factors affecting residents’ perceptions were explored using multivariate regression and correlation analyses. Also, a comparative analysis was done to determine distinctions and commonalities in perceptions as influenced by site-specific scenarios. Results show that, despite respondents presenting relatively high awareness of BCE services, levels of utilization are low with 42.9–92.9% and 23.4–85.1% respondents in Busuanga and Karimunjawa, respectively, not directly utilizing BCE resources. Regression analysis showed that respondents’ occupation significantly influenced their utilization rate and observed opposite correlations in Busuanga (positive) and Karimunjawa (negative). Perceived threats are found to be driven by personal experiences—occurrence of natural disasters in Busuanga whereas discerned anthropogenic activities (i.e., land-use conversion) in Karimunjawa. Meanwhile, recognized management strategies are influenced by the strong presence of relevant agencies like non-government and people’s organizations in Busuanga and the local government in Karimunjawa. These results can be translated as useful metrics in contextualizing and/or enhancing BCE management plans specifically in strategizing advocacy campaigns and engagement of local stakeholders across the CTR.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 233
Author(s):  
Leonid N. Vladimirov ◽  
Grigory N. Machakhtyrov ◽  
Varvara A. Machakhtyrova ◽  
Albertus S. Louw ◽  
Netrananda Sahu ◽  
...  

Climate change is affecting human health worldwide. In particular, changes to local and global climate parameters influence vector and water-borne diseases like malaria, dengue fever, and tick-borne encephalitis. The Republic of Sakha in northern Russia is no exception. Long-term trends of increasing annual temperatures and thawing permafrost have corresponded with the northward range expansion of tick-species in the Republic. Indigenous communities living in these remote areas may be severely affected by human and livestock diseases introduced by disease vectors like ticks. To better understand the risk of vector-borne diseases in Sakha, we aimed to describe the increase and spatial spread of tick-bite cases in the Republic. Between 2000 and 2018, the frequency of tick bite cases increased 40-fold. At the start of the period, only isolated cases were reported in southern districts, but by 2018, tick bites had been reported in 21 districts in the Republic. This trend coincides with a noticeable increase in the average annual temperature in the region since the 2000s by an average of 1 °C. Maps illustrate the northward spread of tick-bite cases. A negative binomial regression model was used to correlate the increase in cases with a number of climate parameters. Tick bite case frequency per district was significantly explained by average annual temperature, average temperature in the coldest month of the year, the observation year, as well as Selyaninov’s hydrothermal coefficient. These findings contribute to the growing literature that describe the relationship between tick abundance and spread in Northern Latitudes and changes in temperatures and moisture. Future studies might use these and similar results to map and identify areas at risk of infestation by ticks, as climates continue to change in Sakha.


Author(s):  
А.А. Лагутин ◽  
Н.В. Волков ◽  
Е.Ю. Мордвин

Представлены результаты исследований влияния глобальных климатических изменений системы Земля на климат Западной Сибири. Для установления зон региона, в которых к середине XXI в. прогнозируются изменения, использовались модельные данные региональной климатической модели RegCM4 и принятые в этом классе задач стандартизованные евклидовы расстояния между характеристиками климата для двух состояний климатической системы — современного и будущего. Установлены зоны Западной Сибири, в которых в рамках сценариев RCP 4.5 и RCP 8.5 возможной эволюции глобальной системы к 2050 г. прогнозируются изменения климата. Purpose. An analysis of the influence of a global climate changes on the climate of Western Siberia, determination of zones of the region where changes are expected in the middle of the twenty-first century. Methodology. Results obtained using the model data of the regional climate model RegCM4 and the standardized Euclidean distances between climate characteristics. Findings, originality. Simulations of the climate characteristics for the two states of the climate system — contemporary and future — have been carried out. The zones of Western Siberia region, in which climate change is expected in the framework of RCP 4.5 and RCP 8.5 radiative forcing scenarios by the 2050, have been determined.


2021 ◽  
Vol 14 (7) ◽  
pp. 32-41
Author(s):  
Netrananda Sahu ◽  
Martand Mani Mishra

It has become evident that the global climate is changing rapidly over the past few decades. The variation and change in the global climatic factors have a notable impact on the local climate of a region. The changing climate is widely regarded as one of the most serious global health threats of the 21st century. Among various kinds of diseases, the most vulnerable to these changes are vector-borne diseases. In the Indian context, particularly Delhi city is the most vulnerable to dengue, a kind of vector-borne disease having its highest impact. We sought to identify and explore the correlation and influence of the global climatic phenomena and local climatic factors with the reported number of dengue cases in Delhi. The temporal expansions of reported dengue cases in Delhi have a variation from its first major outbreak in the city during the year 1996 to 2015. A statistical tool like Pearson Product Moment Correlation (PPMC) is used in this study to establish the interrelationship and the level of impact and local climatic variation on dengue. An exceptional negative correlation value of r = -0.82 between the monsoon index and the dengue incidences was reported during the positive years and also maintains a very high positive correlation with other global climatic indices. The study here finds that there is a strong correlation of climatic variation which further influences the epidemiology of dengue in Delhi.


2013 ◽  
Vol 785-786 ◽  
pp. 1333-1336
Author(s):  
Xiao Feng Yang ◽  
Xing Ping Wen

Land surface temperature (LST) is important factor in global climate change studies, radiation budgets estimating, city heat and others. In this paper, land surface temperature of Guangzhou metropolis was retrieved from two MODIS imageries obtained at night and during the day respectively. Firstly, pixel values were calibrated to spectral radiances according to parameters from header files. Then, the brightness temperature was calculated using Planck function. Finally, The brightness temperature retrieval maps were projected and output. Comparing two brightness temperature retrieval maps, it is concluded that the brightness temperature retrieval are more accurate at night than during the day. Comparing the profile line of brightness temperature from north to south, the brightness temperature increases from north to south. Temperature different from north to south is larger at night than during the day. The average temperature nears 18°C at night and the average temperature nears 26°C during the day, which is consistent with the surface temperature observed by automatic weather stations.


2014 ◽  
Vol 36 (2) ◽  
pp. 185 ◽  
Author(s):  
Fang Chen ◽  
Keith T. Weber

Changes in vegetation are affected by many climatic factors and have been successfully monitored through satellite remote sensing over the past 20 years. In this study, the Normalised Difference Vegetation Index (NDVI), derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Terra satellite, was selected as an indicator of change in vegetation. Monthly MODIS composite NDVI at a 1-km resolution was acquired throughout the 2004–09 growing seasons (i.e. April–September). Data describing daily precipitation and temperature, primary factors affecting vegetation growth in the semiarid rangelands of Idaho, were derived from the Surface Observation Gridding System and local weather station datasets. Inter-annual and seasonal fluctuations of precipitation and temperature were analysed and temporal relationships between monthly NDVI, precipitation and temperature were examined. Results indicated NDVI values observed in June and July were strongly correlated with accumulated precipitation (R2 >0.75), while NDVI values observed early in the growing season (May) as well as late in the growing season (August and September) were only moderately related with accumulated precipitation (R2 ≥0.45). The role of ambient temperature was also apparent, especially early in the growing season. Specifically, early growing-season temperatures appeared to significantly affect plant phenology and, consequently, correlations between NDVI and accumulated precipitation. It is concluded that precipitation during the growing season is a better predictor of NDVI than temperature but is interrelated with influences of temperature in parts of the growing season.


Sign in / Sign up

Export Citation Format

Share Document