scholarly journals Antagonistic activity of strains of lactic acid bacteria isolated from Carpathian cheese

2020 ◽  
Vol 11 (4) ◽  
pp. 572-578
Author(s):  
L. Y. Musiy ◽  
O. Y. Tsisaryk ◽  
I. M. Slyvka ◽  
I. I. Kushnir

A promising area for improving probiotics is the search for new sources of strains and the development of complex preparations which would include different types of bacterial cultures that complement each other. Sources of selection may be traditional dairy products, in particular, cheeses made from raw milk. Wild strains can be endowed with antibacterial properties. The antagonistic action of lactic acid bacteria (LAB) has long attracted the attention of researchers and scientists. The aim of the study was to investigate the antagonistic activity against pathogenic and opportunistic microorganisms of LAB strains isolated from traditional Carpathian cheese. Three samples of cheese were selected for the research – one sample of brynza and budz (brynza before salting), made in the highlands of the Carpathians, and one sample of budz, made in the foothills. LAB were identified using classic microbiological and modern molecular genetic methods (RAPD-PCR, RFLP-PCR, 16S rRNA gene sequencing). The objects of our studies were five strains of LAB: Lactococcus lactis IMAU32258, L. garvieae JB2826472, Enterococcus durans FMA8, E. faecium L3-23, E. faecium IMAU9421. Technological parameters such as acid-forming activity of milk fermentation, resistance to high concentrations of NaCl and temperature optimums of cultivation were taken as the main criteria for assessing the suitability of LAB for inclusion in fermentation preparations. Antagonistic activity was determined by agar diffusion (agar well method) and optic density of test cultures using a Multiscan FC microplate reader (Thermo scientifiс, USA) at the wave of 620 nm. There were four reference strains of pathogenic and opportunistic microorganisms were test cultures: Listeria monocytogenes PCM 2191, Staphylococcus aureus PCM 458, Escherichia coli PCM 2208, Salmonella typhimurium PCM 2182. Strains of the test cultures were received from the collection of microorganisms of the Institute of Biology and Biotechnology the (University of Rzeszów, Poland). According to the ability of LAB strains to form lactic acid, L. lactis IMAU32258 was the best acid-forming agent with an acid-forming energy of 94 °T. E. faecium was characterized by moderate levels of active and titratable acidity. Less pronounced acid-forming ability was determined for the species E. durans and L. garvieae. Cultures of the genus E. faecium, L. garvieae and E. durans were the most resistant to high concentrations of NaCl (6.5%). Regarding temperature optimums, we found that strains of E. faecium and E. durans species grew both at temperatures of 10, 15 and 45 °C, whereas no growth of L. lactis IMAU32258 and L. garvieae JB282647 2 was observed at 45 °C. Among the studied bacteria, the strains of E. durans FMA8 and E. faecium L3-23 were characterized by the highest antagonistic activity in producing the largest zones of growth inhibition and optic density of pathogenic and opportunistic microorganisms. The strain L. garvieae JB282647 2 exhibited the lowest level of antagonistic activity against pathogenic and opportunistic microorganisms.

2016 ◽  
Vol 82 (23) ◽  
pp. 6870-6880 ◽  
Author(s):  
Rosa Guarcello ◽  
Maria De Angelis ◽  
Luca Settanni ◽  
Sabino Formiglio ◽  
Raimondo Gaglio ◽  
...  

ABSTRACTAccumulation of biogenic amines (BAs) in cheese and other foods is a matter of public health concern. The aim of this study was to identify the enzyme activities responsible for BA degradation in lactic acid bacteria which were previously isolated from traditional Sicilian and Apulian cheeses. The selected strains would control the concentration of BAs during cheese manufacture. First, 431 isolates not showing genes encoding the decarboxylases responsible for BA formation were selected using PCR-based methods. Ninety-four out of the 431 isolates degraded BAs (2-phenylethylamine, cadaverine, histamine, putrescine, spermine, spermidine, tyramine, or tryptamine) during cultivation on chemically defined medium. As shown by random amplification of polymorphic DNA-PCR and partial sequencing of the 16S rRNA gene, 78 of the 94 strains wereLactobacillusspecies (Lactobacillus casei,Lb. fermentum,Lb. parabuchneri,Lb. paracasei,Lb. paraplantarum, andLb. rhamnosus),Leuconostocspecies (Leuconostoc lactisandLn. mesenteroides),Pediococcus pentosaceus,Lactococcus lactis,Streptococcusspecies (StreptococcusgallolyticusandS. thermophilus),Enterococcus lactis, andWeissella paramesenteroides. A multicopper oxidase-hydrolyzing BA was purified from the most active strain,Lb. paracaseisubsp.paracaseiCB9CT. The gene encoding the multicopper oxidase was sequenced and was also detected in other amine-degrading strains ofLb. fermentum,Lb. paraplantarum, andP. pentosaceus.Lb. paracaseisubsp.paracaseiCB9CT and another strain (CACIO6CT) of the same species that was able to degrade all the BAs were singly used as adjunct starters for decreasing the concentration of histamine and tyramine in industrial Caciocavallo cheese. The results of this study disclose a feasible strategy for increasing the safety of traditional cheeses while maintaining their typical sensorial traits.IMPORTANCEBecause high concentrations of the potentially toxic biogenic amines may be found in traditional/typical cheeses, the safety of these food items should be improved. Lactic acid bacteria selected for the ability to degrade biogenic amines may be used during cheese making to control the concentrations of biogenic amines.


2009 ◽  
Vol 17 (1) ◽  
pp. 32-45 ◽  
Author(s):  
KAOUTAR YAAKOUBI ◽  
NOREDDINE BENKERROUM ◽  
FLORENT WIOROWSKI ◽  
FRANÇOISE SANSON ◽  
JULIEN HAYDERSAH ◽  
...  

2021 ◽  
Vol 9 (7) ◽  
pp. 1346
Author(s):  
Mariana Petkova ◽  
Petya Stefanova ◽  
Velitchka Gotcheva ◽  
Angel Angelov

Traditional sourdoughs in Bulgaria were almost extinct during the centralized food production system. However, a rapidly developing trend of sourdough revival in the country is setting the demand for increased production and use of commercial starter cultures. The selection of strains for such cultures is based on geographical specificity and beneficial technological properties. In this connection, the aim of this study was to isolate, identify and characterize lactic acid bacteria (LAB) and yeasts from typical Bulgarian sourdoughs for the selection of strains for commercial sourdough starter cultures. Twelve samples of typical Bulgarian sourdoughs were collected from different geographical locations. All samples were analyzed for pH, total titratable acidity and dry matter content. Enumeration of LAB and yeast was also carried out. Molecular identification by 16S rDNA sequence analysis was performed for 167 LAB isolates, and 106 yeast strains were identified by ITS1-5.8S-ITS2 rRNA gene partial sequence analysis. The LAB strains were characterized according to their amylolytic and proteolytic activity and acidification capacity, and 11 strains were selected for further testing of their antimicrobial properties. The strains with the most pronounced antibacterial and antifungal activity are listed as recommended candidates for the development of starter cultures for sourdoughs or other food products.


1999 ◽  
Vol 62 (7) ◽  
pp. 773-777 ◽  
Author(s):  
GIANLUIGI MAURIELLO ◽  
MARIA APONTE ◽  
ROSAMARIA ANDOLFI ◽  
GIANCARLO MOSCHETTI ◽  
FRANCESCO VILLANI

Cell survival, cellular damage, and antagonistic activity were investigated after spray-drying of four bacteriocin-producing strains of lactic acid bacteria: Lactococcus lactis subsp. lactis 140, isolated from natural whey culture and producing a narrow-inhibitory spectrum bacteriocin); L. lactis subsp. lactis G35, isolated from pizza dough and producing nisin; Lactobacillus curvatus 32Y and Lactobacillus sp. 8Z, isolated from dry sausages. Trials were performed with bacteria suspended in skimmed milk or directly grown in whey. Three air temperatures at the inlet of the drier (160, 180, and 200°C) and three flow rates (10, 13, and 17 ml/min) were assayed. Cell viability and bacteriocin activity of the dried materials were determined immediately after the process and after 5, 15, 30, and 60 days of storage at 4°C. There was no significant difference between the two feeding suspensions in cell survival, always decreasing with the increase of inlet-air temperature. No loss of bacteriocin activity was detected in reconstituted powders, nor was any loss of ability to produce bacteriocin found after drying. Investigations of sensitivity to NaCl revealed only temporary damage to dried bacteria. During storage for 2 months at 4°C, all samples, but mainly the lactococcal strains, displayed a gradual decrease in cell survival. Bacteriocin activity remained at the same level, allowing powders to be considered as effective biopreservatives.


2018 ◽  
Vol 85 (3) ◽  
pp. 355-357
Author(s):  
Coralie Barrera ◽  
Gabriel Reboux ◽  
Audrey Laboissière ◽  
Laurence Millon ◽  
Anne Oppliger

This research communication aimed to evaluate the level of immunoglobulin E from lactic acid bacteria (LAB) that are used in dairy industries. Previous studies have demonstrated that workers report symptoms of irritation and are frequently IgG-sensitised to LAB. Workers (n = 44) from a probiotic production unity and the control lab were seen by a medical practitioner and responded to an occupational questionnaire. Specific IgE by the DELFIA® technique against 6 strains of LAB were measured on 44 exposed workers and 31 controls sera. Levels of specific IgE were low and no difference was observed between the two groups. This lack of IgE response could be explained by a healthy worker effect, an efficient implementation of personal protective equipment or by an absence of allergic mechanisms to account for the self-reported irritative symptoms. Despite the high concentrations of LAB, preventive measures are effective enough to guarantee no allergic effect and to prevent other adverse health effects. The implementation of preventive measures to avoid or reduce exposure to dust of LAB, and more generally to milk powder, is recommended in all dairy industry.


Sign in / Sign up

Export Citation Format

Share Document