scholarly journals Thermal and physicochemical properties of starches from three Colombian rice varieties

2017 ◽  
Vol 35 (1) ◽  
pp. 116-124 ◽  
Author(s):  
Diego Rodríguez-Torres ◽  
Walter Murillo-Arango ◽  
Henry Alexander Vaquiro-Herrera ◽  
José F. Solanilla-Duque

Samples of starch from broken grains of three rice varieties grown in Colombia were analyzed to determine their physicochemical and thermal properties: Fedearroz 473 (F473), Fedearroz 50 (F50) and Fedearroz 60 (F60). The granule size, solubility, swelling capacity, amylose content, syneresis, turbidity, thermal and pasting properties of starches were determined. The average size of starch granules was 9.4, 7.4 and 7.2 µm for F473, F50 and F60 samples, respectively. The amylose content showed significant differences between the studied varieties and ranged between 21.4% and 23.0%. Turbidity ranged between 1.95 and 2.34 absorbance units at 620 nm. Thermal properties, evaluated by differential scanning calorimetry (DSC), registered values between 61.6 and 64.6°C for the onset temperature, between 66.6 and 69.3°C for the peak temperature, between 72.1 and 73.9°C for the end temperature, and between 8.38 and 9.47 J g-1 for the gelatinization enthalpy. The higher amylose content the higher grain size, turbidity, syneresis, viscosity, gelatinization temperature and enthalpy, and the lower swelling capacity and solubility. This paper is the first reported research on physicochemical and functional properties of starches from these Colombian rice varieties.

2021 ◽  
Vol 117 (2) ◽  
pp. 1
Author(s):  
Lady Mireya QUEZADA-CORREA ◽  
Oscar CONTRERAS-DIOSES ◽  
Edison Omar MARTÍNEZ-MORA ◽  
Carlos Alberto GÓMEZ-ALDAPA ◽  
Esther RAMÍREZ-MORENO ◽  
...  

Thermal and functional properties of starch extracted from American taro and Indian shot were determined to assess their use in food products. Starch was extracted by the wet-milling method. Physicochemical composition was determined following the Association of Official Agricultural Chemists (AOAC) protocols. Total fibre was measured by the Total Dietary Fiber Assay Kit. The morphology of starch granules was observed by scanning electronic microscopy (SEM). Gelatinization temperature and viscosity were measured by Differential Scanning Calorimetry (DSC) and with a rapid viscosity analyser (RVA), respectively. Swelling capacity, solubility index, and absorption index were measured at 15, 60, 70, 80, and 90 °C. The yield for Indian shot (72.5 %) was higher of that for taro (60.2 %). No significant differences (p > 0.05) were found for moisture, ashes, total fibres, and protein; significant differences were found for fat content, total carbohydrates, amylose, and amylopectin. Granules of Indian shot starch featured ovoid shapes (diameter, 30 µm), while granules of American taro starch presented round shapes (diameter, 15 µm. Gelatinization temperature for American taro (78.33 °C) was higher of that for Indian shot (65.28 °C). Maximum viscosity in Indian shot (3,535.5 cP) was higher of that in American taro (2,446.5 cP). Concerning functional properties, Indian shot starch yielded higher values. Moreover, at high temperature values, American taro starch presented better gelling results than those in Indian shot.


maize, 1.4-2.7%; of waxy barley, 2.1-8.3%; and of waxy swell only slightly in cold water. Granules differ in size rice 0-2.3%; thus the range of amylose contents of the and shape among plants. For example, corn starch has an waxy wheats is comparable to that of other waxy cereal average diameter of about 15 1.1,M, wheat starch has a bi-grains. Biochemical features of starch from waxy wheats modal size distribution of 25-40 and 5-10 [tm, potato are similar to those of waxy maize [71]. starch has an average size of 40 WTI, and rice starch has an Starch from barley contains 22-26% amylose, the rest average size of 5µm [99]. being amylopectin [28]. However, samples of 11-26% The particle sizes of starch granules have recently re-amylose are known, and starch from waxy barley contains ceived much attention because of their important roles in only 0-3% amylose, while high-amylose starches contain determining both the taste and mouthfeel of fat substitutes up to 45%. and the tensible properties of degradable plastic films. Amylose content of rice is categorized as very low Daniel and Whistler [39] reported that small-granule (0-9%), low (9-20%), intermediate (20-25%), or high starch about 2 !um in diameter, or similar in size to the lipid (25-33%) [124]. The amylose content of long grain rice micelle, had advantages as a fat substitute. Lim et al. [117] ranges from 23 to 26%, while medium grain ranges from investigated the use of starches of different particle size in 15 to 20% and short grain ranges from 18 to 20% [103]. degradable plastic film. They reported that a linear correla-Oat amylose content (16-27%) is similar to that of tion between film thickness and particle size and an in-wheat starch, but oat amylose is more linear and oat amy-verse linear correlation between film thickness and particle lopectin is more branched than that found in wheat [121]. size. Small-granule starches may also be used as face pow-Most sorghum starch is similar in composition to corn der or dusting powder, as a stabilizer in baking powder, and contains 70-80% branched amylopectin and 21-28% and as laundry-stiffening agents. amylose [127]. However, waxy or glutinous sorghum con-The size of the wheat starch granule is 1-30 lam, the tains starch with 100% amylopectin and has unique prop-size distribution being bimodal. Such a bimodal size distri-erties similar to waxy corn [158]. Badi et al. [11] reported bution is characteristic of wheat starch, as well as of rye 17% amylose in starch from one pearl milled population. and barley starches. Wheat starch consists of two basic Gracza [69] reviewed the minor constituents of starch. forms: small spherical granules (about 5-10 wri) and larg-Cereal starches contain low levels of lipids. Usually, the er lenticular granules (about 25-4011m). The small B-gran-lipids associated with starch are polar lipids. Generally, the ules are spherical and have a diameter of less than 10 wrt; level of lipids in cereal starch is between 0.5 and 1%. Be-a mean value of about 4 lam has been reported. The large sides low levels of other minerals, starches contain phos-A-granules are lenticular and have a diameter greater than phorus and nitrogen. In the cereals, phosphorus occurs 10 lam, with a mean 14.11.1m. In reality, the granules have a mostly in the form of phospholipids. The nitrogen is gener-continuous distribution of granule size within the range ally considered to be present as protein, but it may also be designated for that starch. Amylose and amylopectin are a constituent of the lipid fraction. intermixed and distributed evenly throughout the granule. The interaction between amylose and lipids is more Many believe that the composition and properties of small powerful by far than that between amylopectin and lipids and large granules are similar, but this is a subject of some [55]. It is well established that polar lipids (e.g., mono-argument and the subject of many research studies [42]. glycerides, fatty acids, and similar compounds) form a hel-Kulp [110] evaluated the fundamental and bread-mak-ical inclusion complex with the amylose molecule, be-ing properties of small wheat starch granules and com-tween the hydrocarbon chain of the lipid and the interior of pared them with those of regular starch. Small granules the amylose helix. were found to be lower in iodine affinity, indicating differ-ences in amylose levels or some fundamental structural differences. Gelatinization temperature ranges, water-binding capacities, and enzymic susceptibilities of small Starch is laid down in the shape of particles in special amy-granules were higher than those of regular ones. loplast cells in the plant. These particles are called gran-Rice has one of the smallest starch granules of cereal ules, and they are the means by which the plant stores en-grains, ranging in size from 3 to 5 pm in the mature grain, ergy for the carbohydrate in a space-saving way, but also to although the small granules of wheat starch are almost the make the energy easily accessible when the seed germi-same size [33]. The small granule size of that starch results nates [57]. One starch granule is synthesized in each amy-in physical properties that make it useful as a dusting flour loplast, and the shape and size of a starch granule is typical in bakeries. Rice starch amyloses have degree of polymer-of its botanical origin. ization (DP) values of 1000-1100 and average chain Starch granules are relatively dense, insoluble, and lengths of 250-320. These structural properties of amylose


Agriculture ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 325
Author(s):  
Ramin Rayee ◽  
Tran Dang Xuan ◽  
Tran Dang Khanh ◽  
Hoang-Dung Tran ◽  
Kifayatullah Kakar

The management of amylose and protein contents and cooking quality are the main challenges in rice macronutrients and quality improvement. This experiment was conducted to examine the rice grain quality, alkali digestion, and gel consistency responses to irrigation interval after anthesis. Three rice varieties (K1, K3, and K4) were subjected to different irrigation intervals (1, 2, and 3 d) after anthesis. The findings of this study showed that the protein content was markedly increased from 6.53–6.63% to 9.93–10.16%, whilst the amylose content was decreased significantly from 22.00–22.43% to 16.33–17.56% under stressed treatments at irrigation intervals, whilst the quantity of fatty acids was not affected. The 3-d irrigation interval recorded the highest protein content but the lowest amylose value. In addition, this treatment shows lower gelatinization temperature, but it is negatively associated with hard gel consistency under irrigation interval. This study highlights that the water management following a 3-d irrigation interval from anthesis is a useful and simple treatment to improve rice nutrients and grain cooking quality.


Genetika ◽  
2015 ◽  
Vol 47 (2) ◽  
pp. 559-570 ◽  
Author(s):  
Mehrzad Allahgholipour ◽  
Ezatollah Farshdfar ◽  
Babak Rabiei

This study was conducted to determine the combining ability and heritability of rice grain yield, its components and some grain quality traits such as amylose content (AC), gelatinization temperature (GT), gel consistency (GC) and head rice recovery (HRR). The study was commenced by crossing the selected rice varieties based on a full diallel mating design. The F1 was harvested at the end of the season. In the following season, the crossed, reciprocal and parental lines were planted in randomly complete block design with three replications. Analysis of variance indicated that genotypes were significantly different for all traits. The diallel analysis by Griffing`s method showed highly significant differences for GCA for number of panicles per plant (PN), amylose content, gelatinization temperature and head rice recovery. Highly significant differences were also observed for both SCA and REC for all evaluated characters. The results showed that the grain yield (GY), number of filled grains (FGN), 100-grain weight (HGW) and GC were controlled by non-additive gene action, while the inheritance of PN, AC, GT and HRR were largely controlled by additive gene effects, although non- additive genetic components and reciprocal effect were also involved, which suggest that a selection process could be done in the early generations. The two improved lines (RI18442-1 and RI18430-46) were found to be good general combiners for GY and FGN, while the best combiners for PN was Tarom Mohali and IR50 and for HGW was RI18430-46. The best combinations for GY were RI18430-46 ? IR50, Tarom Mohali ? RI18447-2 and Daylamani ? RI18430-46. The good hybrids were Tarom Mohali ? IR50, Line23 ? RI18447-2 and Line23 ? Backcross line for AC. Narrow sense heritability showed that the GY and GC had the lowest values while the other traits had either moderate or high heritability, which indicates selection in the early generations could be done to fix the favorable genes. In present study, narrow sense heritability was high for AC and moderate for GT, PN and HRR.


1970 ◽  
Vol 2 (1) ◽  
pp. 12-16
Author(s):  
Shahana Parvin ◽  
Qamrul Hasan ◽  
Knud Erik Bach Knudsen ◽  
Liaquat Ali

Background and Purposes: To observe the influence of parboiling, amylose content and gelatinization temperature of rice on plasma glucose and insulin responses in type 2 diabetic subjects because diabetic subjects are especially prescribed usage of starchy foods with low glycemic responses. Methods: Seventeen type 2 diabetic subjects ingested five test meals of 50g available carbohydrate as white bread, cooked rice with high (29%) and low amylose content (13%), undergoing different processing and gelatinization temperatures. The diets were taken in a random order after a 10h overnight fast with approximately 7 days interval as wash out period. Results: The glycemic index (GI) of all rice varieties were lower than that of white bread (p<0.001). Furthermore, GI of parboiled rice with a high amylose content was lower than that of parboiled low amylose rice (50±7 vs 71±5, p <0.01). No differences were observed between parboiled rice with high and low gelatinization temperature (50±7 vs 47± 4), nor between non-parboiled and parboiled rice (52±7 vs 50±7). Insulin responses to the five test foods did not differ significantly in the study subjects. Conclusions: In type 2 diabetic subjects the investigated rices were all low glycemic as compared to white bread, independent of parboiling and physico-chemical characteristics. The study showed that the amylose content, but not the gelatinization temperature, may be an useful criteria in selection of low GI rices irrespective of parboiling status. Ibrahim Med. Coll. J. 2008; 2(1): 12-16 Key words: Amylose, blood glucose, insulin, type 2 diabetes, parboiled rice.   doi: 10.3329/imcj.v2i1.2925


2007 ◽  
Vol 90 (6) ◽  
pp. 1628-1634 ◽  
Author(s):  
Tatsuya Morita ◽  
Yusuke Ito ◽  
Ian Lewis Brown ◽  
Ryuichi Ando ◽  
Shuhachi Kiriyama

Abstract Digestibility of maize starch granules with different amylose content (AL-0, 22, 54, 68, 80, or 90) was investigated. Measurement of the in vivo resistant starch (RS) content of the starches was performed using surgically prepared ileorectostomized rats. The rats were fed a purified diet containing one of the starches at 652.5 g/kg diet. The in vivo RS content was determined based on the fecal starch excretion. The dietary fiber (DF) value increased as a function of the amylose content in the starch and showed a positive linear correlation with the gelatinization temperature of the granules. In contrast, the in vitro RS content was likely to depend on both the surface area and amylose contents of the starch granules. The maximum in vitro RS content was obtained with AL-68 (54.4). In vivo RS content showed a significant correlation with the amount of in vitro RS but not in respect to the DF detected. The in vivo RS content of AL-68 (43.4) was higher than that found in AL-90 (37.8). A profound gap was observed for AL-54 between the amount of DF (6.4) and RS (in vitro = 46.6 and in vivo = 40.9) present. The results suggest that both in vitro and in vivo digestibility of maize starch is affected by the amylose content and surface area of the granules. The current evaluation suggests that the physiological occurrence of RS from maize starch might be predictable by reference to the in vitro RS value.


2016 ◽  
Vol 96 (3) ◽  
pp. 404-412 ◽  
Author(s):  
Shian Shen ◽  
Hongwei Hou ◽  
Chunbang Ding ◽  
Deng-Jin Bing ◽  
Zhen-Xiang Lu

Protein and starch are two major components in field peas. In this study, we investigated the starch morphologies, compositions, and thermal properties between high protein peas (approximately 30%) and other market types of field peas (yellow, green, maple, and marrowfat peas, with approximately 23% protein contents). For the shape and size, high protein peas had the compound starch granules that could be easily fragmented into small irregular and polygonal granules, whereas other pea types had oval or kidney-like starch granules with high percentage of large granule sizes. High protein peas had significantly lower starch contents (27.2%–34.2%) than other pea types (45.5%–47.4%). However, the amylose content (74.6%–89.2%) in high protein peas were significantly higher that of other pea types (50.1%–54.1%). Our differential scanning calorimeter (DSC) data showed that the onset temperature (To), peak temperature (Tp), and conclusion temperature (Tc) of starch gelatinization in high protein peas were significantly higher than those of other pea types, whereas the enthalpy change (ΔH) of high protein peas was significantly lower than those of other pea types. The unique properties of high protein peas characterized in this study provided useful information to further improve pea quality.


2010 ◽  
Vol 37 (5) ◽  
pp. 439 ◽  
Author(s):  
Rosa P. Cuevas ◽  
Venea D. Daygon ◽  
Henry M. Corpuz ◽  
Leilani Nora ◽  
Russell F. Reinke ◽  
...  

Gelatinisation temperature (GT) is one of the key traits measured in programs for breeding rice (Oryza sativa L.). It is commonly estimated by the alkali spreading value (ASV), and less commonly by differential scanning calorimetry (DSC). Using a diverse set of germplasm, it was determined that DSC values associate poorly with ASV, are not correlated with amylose content but correlate with cooking time. Rice varieties are traditionally grouped into three classes of GT based on ASV: high, intermediate and low. However, the distribution of DSC values of 4000 samples shows only two classes: high and low. Large differences in the distributions of chain lengths synthesised by starch synthase IIa (SSIIa) support the two classes as the major grouping, two haplotypes associating with each peak. Each peak of DSC values spanned 10°C. The chain length distribution of the amylopectin molecules from varieties at the upper boundary of each peak showed significantly more chains that span both the crystalline and amorphous lamellae of a cluster than varieties at the other end of that distribution. Improved varieties, classified as intermediate GT by ASV, belong to both of the classes defined by DSC, implying that some enzyme, other than SSIIa is involved in intermediate GT.


2016 ◽  
Vol 6 (8) ◽  
pp. 506 ◽  
Author(s):  
Madan Kumar Chapagai ◽  
Nordiana Abu Bakar ◽  
Rohana Abdul Jalil ◽  
Wan Abdul Manan Wan Muda ◽  
Taewee Karrila ◽  
...  

Background: The prevalence of diabetes has increased dramatically in recent decades in the regions where people excessively consume white rice. In spite of the higher nutritional values and bioactive components, only the low to medium glycaemic index (GI) brown rice could be of interests as an alternative to white rice in these regions.  Methods: Five varieties, Chiang (CH), Sungyod (SY), Lepnok (LP) from Thailand and Long grain specialty 1 (LS1) and Long grain specialty 2 (LS2)  from Malaysia were tested for GI. Ten test foods were prepared from 5 varieties by 2 cooking techniques (pressure cooker, PC and rice cooker, RC). Overnight fasted healthy subjects were fed with 25 g glucose as a reference food (RF) on 3 occasions and amount equivalent to 25 g available carbohydrate portion of test food (TF) on 1 occasion in separate days. Fasting and post-prandial capillary blood glucose was measured via finger-prick methods at 0, 15, 30, 45, 60, 90 and 120 min, and the incremental area under curve (iAUC) was determined. The GI of each TF was calculated as percentage of incremental area under curve (iAUC) of TF over RF.Results: The mean GI values of SY (72 – 81, high), CH and LP (59 – 65, medium) and LS1 and LS2 (64 – 73, medium to high) were found due to cooking by PC and RC methods. The GI did not vary significantly (p>0.05) among varieties as well as between cooking methods. GI showed a significant negative correlation with the amylose content (r = –0.70, p<0.05) and significant positive correlation with cold peak viscosity (r = 0.80, p<0.01).Conclusions: All five varieties by either cooking methods are classified as medium to high GI. Medium GI varieties could have potential of being used in diabetic diet. Cooking methods did not significantly alter the glycaemic characteristics of the studied varieties. Amylose content and pasting properties can be used for predicting GI of brown rice. It is urgent to explore low GI brown rice varieties in these regions.    


Sign in / Sign up

Export Citation Format

Share Document