scholarly journals Estimation of greenhouse gas emissions from agricultural activities in the Aburra valley Metropolitan Area - Colombia

2016 ◽  
Vol 69 (1) ◽  
pp. 7783-7792 ◽  
Author(s):  
Deicy Catalina Guerra Garcia ◽  
Jairo Alexander Osorio Saraz ◽  
Rolando Barahona Rosales

The aim of this study was to estimate emissions of greenhouse gases (GHG) generated by the agricultural activities carried out in the Metropolitan Area of the Aburrá Valley (AMVA), located in Medellin - Colombia. A TIER 1 approach of the methodology of the Intergovernmental Panel on Climate Change, IPCC was followed. Emissions of GHG from cropland, aggregate sources and non-CO2 emissions from land were estimated and analysis of the uncertainty of activity data and emission factors were made. The estimated total emission was 63.1 and 66 Gg CO2 eq for 2009 and 2011, respectively. The greatest contribution to greenhouse gases in agricultural production was the application of nitrogen to soils in the form of synthetic and organic fertilizers, which was associated with direct and indirect N2O emissions. The main sources of uncertainty were those derived from the activity data.

2019 ◽  
Vol 280 ◽  
pp. 02003
Author(s):  
Qorry Nugrahayu ◽  
Raditya Firmansyah

The use of vehicles in Yogyakarta City is quite a lot. Fuelcombustion in the vehicle produces some greenhouse gases emissions suchas Carbon Dioxide, Methane, and Nitrogen Dioxide. This causes thetransportation sector to become one of the largest greenhouse gasesemission contributors. This research is aimed to calculate the greenhousegases emission (Carbon Dioxide, Nitrogen Dioxide, and Methane) from theroad transportation sector in Yogyakarta City using IPCC(Intergovernmental Panel on Climate Change) Tier 1 and activity data in2015. The result of this research showed that the greenhouse gasesemissions produced in Yogyakarta City for the gasoline fuel and the dieselfuel in 2015 are 236.061 Gg CO2eq /year and 31.807 Gg CO2eq /year. These cause the total greenhouse gases emission from the roadtransportation sector in Yogyakarta City to become 267.868 Gg CO2 eq/year.


2021 ◽  
Vol 21 (7) ◽  
pp. 5655-5683
Author(s):  
Efisio Solazzo ◽  
Monica Crippa ◽  
Diego Guizzardi ◽  
Marilena Muntean ◽  
Margarita Choulga ◽  
...  

Abstract. The Emissions Database for Global Atmospheric Research (EDGAR) estimates the human-induced emission rates on Earth. EDGAR collaborates with atmospheric modelling activities and aids policy in the design of mitigation strategies and in evaluating their effectiveness. In these applications, the uncertainty estimate is an essential component, as it quantifies the accuracy and qualifies the level of confidence in the emission. This study complements the EDGAR emissions inventory by providing an estimation of the structural uncertainty stemming from its base components (activity data, AD, statistics and emission factors, EFs) by (i) associating uncertainty to each AD and EF characterizing the emissions of the three main greenhouse gases (GHGs), namely carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O); (ii) combining them; and (iii) making assumptions regarding the cross-country uncertainty aggregation of source categories. It was deemed a natural choice to obtain the uncertainties in EFs and AD statistics from the Intergovernmental Panel on Climate Change (IPCC) guidelines issued in 2006 (with a few exceptions), as the EF and AD sources and methodological aspects used by EDGAR have been built over the years based on the IPCC recommendations, which assured consistency in time and comparability across countries. On the one hand, the homogeneity of the method is one of the key strengths of EDGAR, on the other hand, it facilitates the propagation of uncertainties when similar emission sources are aggregated. For this reason, this study aims primarily at addressing the aggregation of uncertainties' sectorial emissions across GHGs and countries. Globally, we find that the anthropogenic emissions covered by EDGAR for the combined three main GHGs for the year 2015 are accurate within an interval of −15 % to +20 % (defining the 95 % confidence of a log-normal distribution). The most uncertain emissions are those related to N2O from waste and agriculture, while CO2 emissions, although responsible for 74 % of the total GHG emissions, account for approximately 11 % of global uncertainty share. The sensitivity to methodological choices is also discussed.


2019 ◽  
Vol 7 (2) ◽  
pp. 441-452 ◽  
Author(s):  
Qihui Wang ◽  
Feng Zhou ◽  
Ziyin Shang ◽  
Philippe Ciais ◽  
Wilfried Winiwarter ◽  
...  

Abstract Croplands are the single largest anthropogenic source of nitrous oxide (N2O) globally, yet their estimates remain difficult to verify when using Tier 1 and 3 methods of the Intergovernmental Panel on Climate Change (IPCC). Here, we re-evaluate global cropland-N2O emissions in 1961–2014, using N-rate-dependent emission factors (EFs) upscaled from 1206 field observations in 180 global distributed sites and high-resolution N inputs disaggregated from sub-national surveys covering 15593 administrative units. Our results confirm IPCC Tier 1 default EFs for upland crops in 1990–2014, but give a ∼15% lower EF in 1961–1989 and a ∼67% larger EF for paddy rice over the full period. Associated emissions (0.82 ± 0.34 Tg N yr–1) are probably one-quarter lower than IPCC Tier 1 global inventories but close to Tier 3 estimates. The use of survey-based gridded N-input data contributes 58% of this emission reduction, the rest being explained by the use of observation-based non-linear EFs. We conclude that upscaling N2O emissions from site-level observations to global croplands provides a new benchmark for constraining IPCC Tier 1 and 3 methods. The detailed spatial distribution of emission data is expected to inform advancement towards more realistic and effective mitigation pathways.


2020 ◽  
Author(s):  
Efisio Solazzo ◽  
Monica Crippa ◽  
Diego Guizzardi ◽  
Marilena Muntean ◽  
Margarita Choulga ◽  
...  

Abstract. The Emissions Database for Global Atmospheric Research (EDGAR) estimates the human-induced emission rates on Earth collaborating with atmospheric modelling activities as well as aiding policy in the design of mitigation strategies and in evaluating their effectiveness. In these applications, the uncertainty estimate is an essential component as it quantifies the accuracy and qualifies the level of confidence in the emission. This study complements the EDGAR's emissions inventory with estimation of the structural uncertainty stemming from its base components (activity data statistics (AD) and emission factors (EF)) by i) associating uncertainty to each AD and EF characterizing the emissions of the three main greenhouse gases (GHG) CO2, CH4 and N2O; ii) combining them, and iii) making assumptions for the cross-country uncertainty aggregation of source categories. It was deemed a natural choice to obtain the uncertainties in EFs and AD from the Intergovernmental Panel on Climate Change (IPCC) guidelines issued in 2006 (with a few exceptions), since the EF and AD sources and methodological aspects used by EDGAR have been built over the years based on the IPCC recommendations, which assured consistency in time and comparability across countries. While on one side the homogeneity of the method is one of the key strengths of EDGAR, on the other side it facilitates the propagation of uncertainties when similar emission sources are aggregated. For this reason, this study aims primarily at addressing the aggregation of uncertainties sectorial emissions across GHGs and countries. On global average we find that the anthropogenic emissions of the combined three main GHGs for the year 2015 are accurate within an interval of −15 % to +20 % (defining the 95 % confidence of a log-normal distribution). The most uncertain emissions are those related to N2O from agriculture, while CO2 emissions, although responsible for 74 % of total GHG emissions, accounts for and for approximately 11 % of global uncertainty share. Sensitivity to methodological choices is also discussed.


Author(s):  
M. V. Bazylev M. V. ◽  
◽  
E. A. Levkin E. A. ◽  
V. V. Linkov V. V.

Conducted a production study agricultural activities of JSC "Pochapovo" Pinsk district was allowed to determine the main directions in the organization and management of agriculture: in the direction of improving the system of fertilizer application and, in the introduction of the investment project to irrigate arable enterprise forage crops.


2021 ◽  
Vol 9 (5) ◽  
pp. 983
Author(s):  
Cristina Lazcano ◽  
Xia Zhu-Barker ◽  
Charlotte Decock

The use of organic fertilizers constitutes a sustainable strategy to recycle nutrients, increase soil carbon (C) stocks and mitigate climate change. Yet, this depends largely on balance between soil C sequestration and the emissions of the potent greenhouse gas nitrous oxide (N2O). Organic fertilizers strongly influence the microbial processes leading to the release of N2O. The magnitude and pattern of N2O emissions are different from the emissions observed from inorganic fertilizers and difficult to predict, which hinders developing best management practices specific to organic fertilizers. Currently, we lack a comprehensive evaluation of the effects of OFs on the function and structure of the N cycling microbial communities. Focusing on animal manures, here we provide an overview of the effects of these organic fertilizers on the community structure and function of nitrifying and denitrifying microorganisms in upland soils. Unprocessed manure with high moisture, high available nitrogen (N) and C content can shift the structure of the microbial community, increasing the abundance and activity of nitrifying and denitrifying microorganisms. Processed manure, such as digestate, compost, vermicompost and biochar, can also stimulate nitrifying and denitrifying microorganisms, although the effects on the soil microbial community structure are different, and N2O emissions are comparatively lower than raw manure. We propose a framework of best management practices to minimize the negative environmental impacts of organic fertilizers and maximize their benefits in improving soil health and sustaining food production systems. Long-term application of composted manure and the buildup of soil C stocks may contribute to N retention as microbial or stabilized organic N in the soil while increasing the abundance of denitrifying microorganisms and thus reduce the emissions of N2O by favoring the completion of denitrification to produce dinitrogen gas. Future research using multi-omics approaches can be used to establish key biochemical pathways and microbial taxa responsible for N2O production under organic fertilization.


Author(s):  
Junfeng Zhang ◽  
Jinyuan Tao ◽  
Lei Xu ◽  
Xiong Zhang ◽  
Yuteng Sun

Identifying geographical spatial conflicts and optimizing development patterns are important prerequisites for eliminating the conflicts of geographical spatial conflict. The paper takes the Wuhan Metropolitan Area as an example. Using grid-scale data, we construct a multi-functional suitability evaluation index system for geographical space, starting from three dimensions: ecological protection, agricultural production and urban construction. The multi-index comprehensive evaluation method is used to measure the geographical spatial suitability level and identify the characteristics of geographical spatial conflict patterns. Three-dimensional Rubik's cube model is used to divide the space conflict types and optimize the partition. We found that the areas with suitable ecological protection functions and more suitable areas are mainly distributed near the waters and the Dabie Mountains and Mufu Mountains with relatively high altitude in Wuhan Metropolitan Area. Suitable areas for agricultural production functions are concentrated in the Jianghan Plain. Suitable areas for urban construction functions are concentrated around urban areas, established towns, and major transportation routes. Regions with high intensity of land and space conflicts are mainly located in the central and northwestern parts of the Wuhan Metropolitan Area. Regions with low levels of conflict are concentrated in the west, northeast, and southeast regions of the Wuhan Metropolitan Area. The degree of geographical spatial conflict in Wuhan Metropolitan Area can be divided into three primary zones and 12 secondary zones, which are intense conflict zone, general conflict zone, and weak conflict zone. Based on multi-functional perspective, identifying and analyzing the types of geographical spatial conflict will help locate the development direction of different conflict areas and provide theoretical and technical support for the optimization of geographical space.


Agriculture ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 654
Author(s):  
Simona Menardo ◽  
Giacomo Lanza ◽  
Werner Berg

The N2O emissions of 21 dairy farms in Germany were evaluated to determine the feasibility of an estimation of emissions from farm data and the effects of the farm management, along with possible mitigation strategies. Emissions due to the application of different fertilisers, manure storage and grazing were calculated based on equations from the IPCC (Intergovernmental Panel of Climate Change) and German emission inventory. The dependence of the N2O emissions on fertiliser type and quantity, cultivated crops and diet composition was assessed via correlation analysis and linear regression. The N2O emissions ranged between 0.11 and 0.29 kg CO2eq per kilogram energy-corrected milk, with on average 60% resulting from fertilisation and less than 30% from fertiliser storage and field applications. The total emissions had a high dependence on the diet composition; in particular, on the grass/maize ratio and the protein content of the animal diet, as well as from the manure management. A linear model for the prediction of the N2O emissions based on the diet composition and the fertilisation reached a predictive power of R2 = 0.89. As a possible mitigation strategy, the substitution of slurry for solid manure would reduce N2O emissions by 40%. Feeding cows maize-based diets instead of grass-based diets could reduce them by 14%.


2018 ◽  
Author(s):  
Sissel Hansen ◽  
Randi Berland Frøseth ◽  
Maria Stenberg ◽  
Jarosław Stalenga ◽  
Jørgen E. Olesen ◽  
...  

Abstract. The emissions of nitrous oxide (N2O) and leaching of nitrate (NO3) have considerable negative impacts on climate and the environment. Although these environmental burdens are on average less per unit area in organic than in non-organic production, they are not smaller per unit of product. If organic farming is to maintain its goal of being an environmentally friendly production system, these emissions should be mitigated. We discuss the impact of possible triggers within organic arable farming practice for the risk of N2O emissions and NO3 leaching under European climatic conditions, and possible strategies to reduce these. Organic arable crop rotations can be characterised as diverse with frequent use of legumes, intercropping and organic fertilizers. The soil organic matter content and share of active organic matter, microbial and faunal activity are higher, soil structure better and yields lower, than in non-organic, arable crop rotations. Soil mineral nitrogen (SMN), N2O emissions and NO3 leaching are low under growing crops, but there is high potential for SMN accumulation and losses after crop termination or crop harvest. The risk for high N2O fluxes is increased when large amounts of herbage or organic fertilizers with readily available nitrogen (N) and carbon are incorporated into the soil or left on the surface. Freezing/thawing, drying/rewetting, compacted and/or wet soil and mixing with rotary harrow further enhance the risk for high N2O fluxes. These complex soil N dynamics mask the correlation between total N-input and N2O emissions from organic arable crop rotations. Incorporation of N rich plant residues or mechanical weeding followed by bare fallow increases the risk of nitrate leaching. In contrast, strategic use of deep-rooted crops with long growing seasons in the rotation reduces nitrate leaching risk. Reduced tillage can reduce N leaching if yields are maintained. Targeted treatment and use of herbage from green manures, crop residues and catch crops will increase N efficiency and reduce N2O emissions and NO3 leaching. Continued regular use of catch crops has the potential to reduce NO3 leaching but may enhance N2O emissions. A mixture of legumes and non-legumes (for instance grasses or cereals) are as efficient a catch crop as monocultures of non-legume species.


2020 ◽  
Vol 202 ◽  
pp. 09004
Author(s):  
Satya Pinem ◽  
Mahawan Karuniasa ◽  
Chairil Abdini

Oil and gas (O&G) production activities emits greenhouse gases (GHG) which must be well estimated to improve accountability and formulating efficient mitigation. The Indonesia’s GHG emission reported thru Nationally Determined Contribution (NDC) was estimated by Tier-1 Intergovernmental Panel on Climate Change (IPCC) method, while the O&G company adopts different methodology. This leads to asynchronous GHG emission contribution of this industry to national GHG emission. This paper aims to estimate the GHG inventory from O&G offshore production facility by using American Petroleum Institute (API) Compendium Methodology and compare it with Tier-1 IPCC Methodology. It found that GHG emission estimated by API method is significantly lower than IPCC method. Both methods shown fuel combustion sources are the dominant. GHG emission sources from fuel combustion and flaring have been well identified, but emission sources from venting and fugitive need to be improved. Moreover this study identified that to have more accurate national GHG inventory, the GHG calculation method might be different for each industry segment. This evaluation could improve the future national GHG inventory and as reference for the industry. National emission factors database for O&G industry segment is highly suggested to be developed.


Sign in / Sign up

Export Citation Format

Share Document