scholarly journals INNOVATION TECHNOLOGIES IN SOFT FRUIT PRODUCTION

2019 ◽  
Vol 17 (Suppl.1) ◽  
pp. 215-220
Author(s):  
Dobri Dunchev

The global challenges associated with climate change, food security and the growing instability with land and water shortages are changing the agriculture. The innovation technologies are crucially important to meet those issues and to improve productivity and sustainability of agricultural production. The aim of the study is to analyze the innovative technologies that could help farmers to improve soft fruit producing. The paper uses various methods of analysis – graphic, comparative and statistical. The new technologies in high-tech greenhouse horticulture are observed. The survey focuses on sensors (sensors for measuring water and air temperature, advanced sensors to determine microclimate and the activity of the crop) energy solutions, production technology, polytunnels, precision irrigation and robotics. The results indicate that the innovation technologies could improve water and nutrient use efficiency, increase yields and reduce the environmental impact. The innovation technologies in fruit sector are also important for human health. The implementation of innovative methods could stimulate the production of quality fruits which are environmentally friendly and internationally competitive.

2020 ◽  
Author(s):  
A. Karthik ◽  
M. Uma Maheswari

Food security is one of the major concerns for all developing countries of the world. Even though we had attained the highest food production with the use of new technologies, we may not able to feed the burgeoning population adequately in coming years due to stagnant crop productivity. Natural source of nutrients like organic manures and external source of nutrients, viz. fertilizers, are considered as the two eyes in plant nutrient management. Nutrient use efficiency of fertilizer is very low due to numerous pathways of losses such as leaching, denitrification, microbial immobilization, fixation and runoff. It has been estimated that around 40-70% of nitrogen, 80-90% of phosphorus, 50-70% of potassium and more than 95% of micronutrient content of applied fertilizers are lost in to the environment and results in pollution (Kanjana, 2017). Smart fertilizers like slow and controlled release fertilizers, nanofertilizers and bioformulation fertilizers are the new technologies to enhance the nutrient use efficiency their by improving crop yield in sustainable manner. The use of slow and controlled release fertilizers increase nutrient use efficiency, minimize the risks like leaf burning, water contamination and eutrophication. Nano-fertilizers are the nano-particles-based fertilizers, where supply of the nutrients is made precisely for maximum plant growth, have higher use efficiency, exploiting plant unavailable nutrients in the rhizosphere and can be delivered on real time basis into the rhizosphere or by foliar spray (Priyanka Solangi et al., 2015). The small size, high specific surface area and reactivity of nano fertilizers increase the solubility, diffusion and availability of nutrients to plants and enhance crop productivity. Bioformulation is microbial preparations containing specific beneficial microorganisms which are capable of fixing or solubilizing or mobilizing plant nutrients for promoting plant growth and crop yield. Smart fertilizers are the better option for the farmers to increase their crop yield with low input cost in sustainable way without degrading natural environment.


EDIS ◽  
2020 ◽  
Vol 2020 (5) ◽  
Author(s):  
Mary Dixon ◽  
Guodong Liu

Tomato is in high demand because of its taste and health benefits. In Florida, tomato is the number one vegetable crop in terms of both acreage and value. Because of its high value and wide acreage, it is important for tomato production to be efficient in its water and nutrient use, which may be improved through fertigation practices. Therefore, the objective of this new 7-page article is to disseminate research-based methods of tomato production utilizing fertigation to enhance yield and nutrient use efficiency. Written by Mary Dixon and Guodong Liu, and published by the UF/IFAS Horticultural Sciences Department.https://edis.ifas.ufl.edu/hs1392


2018 ◽  
Vol 102 (4) ◽  
pp. 8-10
Author(s):  
Fernando García ◽  
Andrés Grasso ◽  
María González Sanjuan ◽  
Adrián Correndo ◽  
Fernando Salvagiotti

Trends over the past 25 years indicate that Argentina’s growth in its grain crop productivity has largely been supported by the depletion of the extensive fertility of its Pampean soils. Long-term research provides insight into sustainable nutrient management strategies ready for wide-scale adoption.


2021 ◽  
Vol 192 ◽  
pp. 103181
Author(s):  
Jagadish Timsina ◽  
Sudarshan Dutta ◽  
Krishna Prasad Devkota ◽  
Somsubhra Chakraborty ◽  
Ram Krishna Neupane ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 959
Author(s):  
Arshad Jalal ◽  
Fernando Shintate Galindo ◽  
Eduardo Henrique Marcandalli Boleta ◽  
Carlos Eduardo da Silva Oliveira ◽  
André Rodrigues dos Reis ◽  
...  

Enrichment of staple food with zinc (Zn) along with solubilizing bacteria is a sustainable and practical approach to overcome Zn malnutrition in human beings by improving plant nutrition, nutrient use efficiency, and productivity. Common bean (Phaseolus vulgaris L.) is one of a staple food of global population and has a prospective role in agronomic Zn biofortification. In this context, we evaluated the effect of diazotrophic bacterial co-inoculations (No inoculation, Rhizobium tropici, R. tropici + Azospirillum brasilense, R. tropici + Bacillus subtilis, R. tropici + Pseudomonas fluorescens, R. tropici + A. brasilense + B. subtilis, and R. tropici + A. brasilense + P. fluorescens) in association with soil Zn application (without and with 8 kg Zn ha−1) on Zn nutrition, growth, yield, and Zn use efficiencies in common bean in the 2019 and 2020 crop seasons. Soil Zn application in combination with R. tropici + B. subtilis improved Zn accumulation in shoot and grains with greater shoot dry matter, grain yield, and estimated Zn intake. Zinc use efficiency, recovery, and utilization were also increased with co-inoculation of R. tropici + B. subtilis, whereas agro-physiological efficiency was increased with triple co-inoculation of R. tropici + A. brasilense + P. fluorescens. Therefore, co-inoculation of R. tropici + B. subtilis in association with Zn application is recommended for biofortification and higher Zn use efficiencies in common bean in the tropical savannah of Brazil.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 643
Author(s):  
Gaia Santini ◽  
Natascia Biondi ◽  
Liliana Rodolfi ◽  
Mario R. Tredici

Cyanobacteria can be considered a promising source for the development of new biostimulants as they are known to produce a variety of biologically active molecules that can positively affect plant growth, nutrient use efficiency, qualitative traits of the final product, and increase plant tolerance to abiotic stresses. Moreover, the cultivation of cyanobacteria in controlled and confined systems, along with their metabolic plasticity, provides the possibility to improve and standardize composition and effects on plants of derived biostimulant extracts or hydrolysates, which is one of the most critical aspects in the production of commercial biostimulants. Faced with these opportunities, research on biostimulant properties of cyanobacteria has undergone a significant growth in recent years. However, research in this field is still scarce, especially as regards the number of investigated cyanobacterial species. Future research should focus on reducing the costs of cyanobacterial biomass production and plant treatment and on identifying the molecules that mediate the biostimulant effects in order to optimize their content and stability in the final product. Furthermore, the extension of agronomic trials to a wider number of plant species, different application doses, and environmental conditions would allow the development of tailored microbial biostimulants, thus facilitating the diffusion of these products among farmers.


2019 ◽  
Vol 7 (3) ◽  
pp. 368-377 ◽  
Author(s):  
Zilhas Ahmed Jewel ◽  
Jauhar Ali ◽  
Yunlong Pang ◽  
Anumalla Mahender ◽  
Bart Acero ◽  
...  

2007 ◽  
Vol 62 (1) ◽  
pp. 1-12 ◽  
Author(s):  
C. L. Marley ◽  
R. Fychan ◽  
M. D. Fraser ◽  
R. Sanderson ◽  
R. Jones

Sign in / Sign up

Export Citation Format

Share Document