scholarly journals Developing green super rice varieties with high nutrient use efficiency by phenotypic selection under varied nutrient conditions

2019 ◽  
Vol 7 (3) ◽  
pp. 368-377 ◽  
Author(s):  
Zilhas Ahmed Jewel ◽  
Jauhar Ali ◽  
Yunlong Pang ◽  
Anumalla Mahender ◽  
Bart Acero ◽  
...  
Author(s):  
Zilhas Jewel ◽  
Jauhar Ali ◽  
Yunlong Pang ◽  
Mahender Anumalla ◽  
Bart Acero ◽  
...  

To develop green super rice varieties with high and stable yields under the rainfed conditions and improved nutrient use efficiency (NuUE), a modified backcross (BC) breeding approach was adopted using a high yielding and widely adaptable Xian variety, WTR1, as the recipient and a Geng variety, HAN, as the donor. Starting from the BC1F2 generation, the BC population had gone through one generation of selection under the IG, LI and RF conditions, followed by consecutive four generations of screening and selection for high GY under six different nutrient conditions, leading to the development of 230 BC1F6 introgression lines (ILs). The final evaluation of the 230 ILs under the six nutrient conditions identified many ILs with improved yields under various combinations of nutrient deficient conditions, including 12 promising lines that had significantly improved NuUE under two or more nutrient deficiency conditions. Our results demonstrated an efficient inter-subspecific BC breeding procedure with first round selection under the rainfed-drought condition followed by four generations of progeny testing for yield performances under six different nutrient conditions. The promising ILs were studied under replicated yield trials under 75N and -NPK conditions for developing high yield rice varieties with improved NuUE. Our results indicated that NuUE in rice was controlled by complex genetic and physiological mechanisms and the developed ILs provided useful materials for genetic and molecular dissection of NuUE in rice.


Author(s):  
Santrupta Manmath Satapathy ◽  
V.K. Srivastava ◽  
Suraj Gond ◽  
Prasanta Kumar Majhi

Background: The present investigation was concentrated to determine the nutrient uptake capacity of different varieties of rice (Oryza sativa L.) under delayed planting condition. The purpose of the study is to evaluate the nutrient content in straw and grain in different varieties of rice to understand the nutrient acquisition capacity. Methods: The experiment was conducted during kharif-2018 in a split plot design with three replications at Agricultural Research Farm, BHU, Varanasi with a combination of four rice varieties (HUR-3022, DRR-44, HUR-4-3 and HUR-105) as subplot factor and three dates of planting (06/09/2018, 13/08/2018 and 20/08/2018) as main-plot factor. Result: Among the varieties, DRR-44 was observed efficient for N, P and K absorption under timely planting conditions and recorded higher N content (1.01%) than HUR-3022 (0.91%) and HUR-105 (0.86%). The P (0.45%) and K (0.29%) content were observed highest for the variety DRR-44 on the first date of planting (06/08/2018). Maximum N, P and K uptake by grain and straw were recorded in DRR-44 followed by HUR-3022 and HUR-105. DRR-44 was also the highest grain and straw yielder. Thus, improved varieties of rice with higher nutrient use efficiency should be the priority for quality and higher yield of straw and grain of the crop.


EDIS ◽  
2020 ◽  
Vol 2020 (5) ◽  
Author(s):  
Mary Dixon ◽  
Guodong Liu

Tomato is in high demand because of its taste and health benefits. In Florida, tomato is the number one vegetable crop in terms of both acreage and value. Because of its high value and wide acreage, it is important for tomato production to be efficient in its water and nutrient use, which may be improved through fertigation practices. Therefore, the objective of this new 7-page article is to disseminate research-based methods of tomato production utilizing fertigation to enhance yield and nutrient use efficiency. Written by Mary Dixon and Guodong Liu, and published by the UF/IFAS Horticultural Sciences Department.https://edis.ifas.ufl.edu/hs1392


2018 ◽  
Vol 102 (4) ◽  
pp. 8-10
Author(s):  
Fernando García ◽  
Andrés Grasso ◽  
María González Sanjuan ◽  
Adrián Correndo ◽  
Fernando Salvagiotti

Trends over the past 25 years indicate that Argentina’s growth in its grain crop productivity has largely been supported by the depletion of the extensive fertility of its Pampean soils. Long-term research provides insight into sustainable nutrient management strategies ready for wide-scale adoption.


2021 ◽  
Vol 192 ◽  
pp. 103181
Author(s):  
Jagadish Timsina ◽  
Sudarshan Dutta ◽  
Krishna Prasad Devkota ◽  
Somsubhra Chakraborty ◽  
Ram Krishna Neupane ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 959
Author(s):  
Arshad Jalal ◽  
Fernando Shintate Galindo ◽  
Eduardo Henrique Marcandalli Boleta ◽  
Carlos Eduardo da Silva Oliveira ◽  
André Rodrigues dos Reis ◽  
...  

Enrichment of staple food with zinc (Zn) along with solubilizing bacteria is a sustainable and practical approach to overcome Zn malnutrition in human beings by improving plant nutrition, nutrient use efficiency, and productivity. Common bean (Phaseolus vulgaris L.) is one of a staple food of global population and has a prospective role in agronomic Zn biofortification. In this context, we evaluated the effect of diazotrophic bacterial co-inoculations (No inoculation, Rhizobium tropici, R. tropici + Azospirillum brasilense, R. tropici + Bacillus subtilis, R. tropici + Pseudomonas fluorescens, R. tropici + A. brasilense + B. subtilis, and R. tropici + A. brasilense + P. fluorescens) in association with soil Zn application (without and with 8 kg Zn ha−1) on Zn nutrition, growth, yield, and Zn use efficiencies in common bean in the 2019 and 2020 crop seasons. Soil Zn application in combination with R. tropici + B. subtilis improved Zn accumulation in shoot and grains with greater shoot dry matter, grain yield, and estimated Zn intake. Zinc use efficiency, recovery, and utilization were also increased with co-inoculation of R. tropici + B. subtilis, whereas agro-physiological efficiency was increased with triple co-inoculation of R. tropici + A. brasilense + P. fluorescens. Therefore, co-inoculation of R. tropici + B. subtilis in association with Zn application is recommended for biofortification and higher Zn use efficiencies in common bean in the tropical savannah of Brazil.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 643
Author(s):  
Gaia Santini ◽  
Natascia Biondi ◽  
Liliana Rodolfi ◽  
Mario R. Tredici

Cyanobacteria can be considered a promising source for the development of new biostimulants as they are known to produce a variety of biologically active molecules that can positively affect plant growth, nutrient use efficiency, qualitative traits of the final product, and increase plant tolerance to abiotic stresses. Moreover, the cultivation of cyanobacteria in controlled and confined systems, along with their metabolic plasticity, provides the possibility to improve and standardize composition and effects on plants of derived biostimulant extracts or hydrolysates, which is one of the most critical aspects in the production of commercial biostimulants. Faced with these opportunities, research on biostimulant properties of cyanobacteria has undergone a significant growth in recent years. However, research in this field is still scarce, especially as regards the number of investigated cyanobacterial species. Future research should focus on reducing the costs of cyanobacterial biomass production and plant treatment and on identifying the molecules that mediate the biostimulant effects in order to optimize their content and stability in the final product. Furthermore, the extension of agronomic trials to a wider number of plant species, different application doses, and environmental conditions would allow the development of tailored microbial biostimulants, thus facilitating the diffusion of these products among farmers.


2007 ◽  
Vol 62 (1) ◽  
pp. 1-12 ◽  
Author(s):  
C. L. Marley ◽  
R. Fychan ◽  
M. D. Fraser ◽  
R. Sanderson ◽  
R. Jones

Sign in / Sign up

Export Citation Format

Share Document