scholarly journals Pharmacokinetics and tissue depletion of doxycycline administered at high dosage to broiler chickens via the drinking water

2016 ◽  
Vol 64 (4) ◽  
pp. 472-481 ◽  
Author(s):  
Pai-Feng Hsiao ◽  
Shao-Kuang Chang ◽  
Tien-Huan Hsu ◽  
Kuang-Po Li ◽  
Chi-Chung Chou

The recommended use of doxycycline (DC) to broiler chicken is 100 mg/L via the drinking water and a 7-day withdrawal time (WDT). However, study of a higher dosage is desirable because of the possible increase of antimicrobial resistance and disease spectrum. Tissue DC residues exceeding the current maximum residue levels (MRL) was our major concern. Therefore, serum concentration and tissue depletion of DC hyclate after administration of 200 mg/L of DC in the drinking water for five consecutive days were studied. The steady-state DC concentration (8.3 ± 0.9 μg/mL) was reached on the third day of medication. The elimination constant (0.05 ± 0.01 1/h), half-life (14.9 ± 1.4 h), area under concentration versus time curve (81.0 ± 9.9 h·μg/mL) and mean residence time (22.7 ± 2.5 h) were obtained using a non-compartmental pharmacokinetic model. It was determined that the current 7-day WDT regulation was still legitimate for the kidney and liver as well as for the breast and leg muscles, which were estimated by linear regression analysis of the 99% upper distribution limit. The unregulated heart and gizzard were considered safe even when the lowest MRL of muscle (100 ng/g) was applied. While at the present time the extra-label use of drugs is only allowed under specific conditions, in the future it may become necessary to increase the general dosage of DC, and the current results suggest a safe range of DC hyclate in chicken; however, skin/fat tissue residues warrant further studies.

2021 ◽  
Author(s):  
Magdalena Krauze

Genetic advance aimed at accelerating the growth rate of slaughter birds have reduced the natural resistance of poultry to infections. It also increased susceptibility to stress, which resulted in deterioration of the welfare and productivity of poultry. Additionally, intensive poultry production poses a risk of exposure of chickens to unfavorable zoo-hygienic conditions and contamination with pathogens from the external environment (bedding, water, feed, hen house staff, sick birds in the flock). Due to the potential production losses, measures are taken to improve the health and effectiveness of bird rearing, for example by using growth stimulants and improving the composition of the gastrointestinal microbiome and improving metabolism and the work of the immune system. The addition of phytobiotics to feed or drinking water supports digestion and metabolism in the body, stimulates the growth and development of a useful microbiome, limits the multiplication and adhesion of pathogens, and improves the structure and functioning of enterocytes. The aim of this study is to present the health benefits resulting from the use of phytobiotics in poultry production, as well as to make people aware of the dangers of incompetent incorporation of herbs into feed mixtures or into drinking water. Due to the fact that not all species of animals react equally to a given plant, the selection of plant materials should be carefully considered and matched to the expected benefits. By using phytobiotics you can improve growth and performance of broiler chickens, through greatly improve digestion and nutrient assimilation. Plant additives can improve health through stimulate immunity and increase resistance to stress. Using of phitobiotics improve the quality of meat and eggs, increase the weight of valuable parts of carcass (pectoral and leg muscles) and stimulate laying. Unfortunately, due to the potentially toxic effect of an excess of certain herbs on the work of the liver, and the adverse changes in the palatability of eggs, use caution in the use some herbs e.g. of garlic, turmeric, rapeseed, alfa alfa, shiny privet or moringa.


2020 ◽  
Vol 20 (2) ◽  
pp. 647-660
Author(s):  
Iwona Skomorucha ◽  
Ewa Sosnówka-Czajka ◽  
Renata Muchacka

AbstractThe aim of the present study was to determine the effects of supplementing drinking water with an extract of mixed herbs or housing with outdoor access on carcass traits, levels of antioxidant enzymes (SOD, CAT, GPx), reduced glutathione (GSH), malondialdehyde (MDA), and selected quality parameters of meat from broiler chickens. One-day-old Ross 308 broiler chickens were allocated to three groups: group I (control), in which birds were kept in compartments on litter and had no outdoor access; group II, in which birds were kept in compartments on litter without outdoor access and were supplemented with an extract of mixed herbs (50% Melissa officinalis L. and 50% Urtica dioica L.) at 2 ml/l of drinking water; and group III, in which birds were raised in compartments on litter and had outdoor access from day 1 of rearing. Throughout the rearing period, the broilers had free access to feed and water. On day 42, 20 birds were selected from each group, slaughtered and subjected to simplified slaughter analysis. Their breast and leg muscles were measured for pH, colour, water holding capacity (WHC) and drip loss, and analysed for the content of antioxidant enzymes (SOD, CAT, GPx), reduced glutathione (GSH), malondialdehyde (MDA) and fatty acids. The outdoor access reduced dressing percentage, both with (P≤0.01) and without giblets (P≤0.05). The supplementation of drinking water with the mixed herb extract (2 ml/l) improved the muscle antioxidant status (higher SOD, CAT and GSH content) and reduced lipid peroxidation in the leg muscles of the broilers (lower MDA level). In general, the supplementation of the diet with the mixture of herbs in the applied form and concentration, as well as the outdoor access had no effect on the other examined quality parameters of broiler meat.


Author(s):  
L. Gamko ◽  
T. Tarinskaya

It is known that necessary to replace the components of organic acids, which are part of acidifiers when drinking water to poultry in order to prevent the adaptation of microbes in the gastrointestinal tract. In the poultry industry organic acids are widely used, which are used as acidifiers to preserve the properties of water consumed. The purpose of this work was to evaluate the efficiency of broiler meat production when using acidifying agents of drinking water Aquasafe and Veleguard. The experimental part of the work has been performed in JSC “Kurinoe Tsarstvo-Bryansk” broiler area “Roshcha” in the Pochepsky district. The object of research was the livestock of broiler chickens cross Cobb 500 at floor housing. The effect of water acidifiers on meat productivity has been studied. Groups of chickens have been formed on the principle of pairs-analogues. Broiler chickens of experimental groups have been separated from the main livestock by a grid in the corner of the room for 100 heads in each group. It has been found by a result of research to be optimal dose usage of acidifying agents water Aquasafe and Veleguard to drink to broiler chickens. The positive effect of these acidifiers on the digestion of crude protein, crude fat, crude fiber, contributing to the effective use of nitrogen, which led to an increase in the intensity of growth, young animals’ livability and improved feed conversion. Slaughter yield in the control group was 55,1 %, and in the experimental group 57,2 and 58,4 %, which was by 2,1 and 3,3 % higher with the same level of metabolic energy and nutrients. In chickens that consumed acidifi ers more intensively used nutrients feed for deposition in the body of the components of the carcass, which affected the production. A positive impact of acidifying agents Aquasafe and Veleguard on meat quality in broiler chickens has been found.


Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1535
Author(s):  
M. Adaszyńska-Skwirzyńska ◽  
D. Szczerbińska ◽  
S. Zych

Biological activity of lavender essential oil is a property that can potentially find an application in poultry nutrition. Nowadays, the use of bioactive compounds is encouraged in many areas of industry and agriculture, since these substances have similar properties as withdrawn antibiotic growth promoters. Additionally, antibiotic resistance bacteria are one of the most important current threats to animal health. The purpose of the study was to determine the influence of lavender essential oil on the production parameters and blood parameters in broiler chickens and to assess the lavender oil’s in vitro reaction in a combination with enrofloxacin towards Escherichia coli. One-day-old non-sexed chicks (Ross 308) were divided into three experimental groups, each consisting of 100 individuals (five replicate of 20 boiler chicken each). The chickens in the control group received drinking water with no addition of lavender essential oil. In the experimental groups, lavender oil was added to the drinking water at a concentration of 0.4 mL/L, in the LEO1–42 from 1 to 42 days of age and the LEO22–42 group from the 22 to 42 days of age. The chickens’ body weight, feed consumption, water consumption, deaths and elimination due to health reasons were determined in the experiment. On day 42 of the chickens’ lives, blood samples were collected based on which selected parameters were identified. An in vitro experiment of lavender oil in combination with enrofloxacin was investigated with a checkerboard method. The results of the experiment showed the antimicrobial and antioxidant activity of lavender essential oil and its positive effect on the production results of broiler chickens. The study results proved that the addition of lavender oil positively impacted the chickens’ final body weight and feed conversion ratio (p < 0.01). No differences were observed between the groups for water consumption, death rate and the examined biochemical and immunological blood serum indices. Lavender essential oil was demonstrated to increase the blood serum’s total antioxidant status. A synergistic reaction in vitro was observed for lavender oil combined with enrofloxacin against resistant strains of Escherichia coli. Based on our study, a health-promoting effect of adding LEO to water for broiler chickens was found. Moreover, in vitro studies indicate a significant effect of lavender essential oil on the inhibition of the resistant strains of Escherichia coli growth and synergistic reaction with enrofloxacin.


Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 399
Author(s):  
Magdalena Krauze ◽  
Monika Cendrowska-Pinkosz ◽  
Paulius Matuseviĉius ◽  
Anna Stępniowska ◽  
Paweł Jurczak ◽  
...  

It was postulated that a phytobiotic preparation containing cinnamon oil and citric acid added to drinking water for chickens in a suitable amount and for a suitable time would beneficially modify the microbiota composition and morphology of the small intestine, thereby improving immunity and growth performance without inducing metabolic disorders. The aim of the study was to establish the dosage and time of administration of such a phytobiotic that would have the most beneficial effect on the intestinal histology and microbiota, production results, and immune and metabolic status of broiler chickens. The experiment was carried out on 980 one-day-old male chickens until the age of 42 days. The chickens were assigned to seven experimental groups of 140 birds each (seven replications of 20 individuals each). The control group (G-C) did not receive the phytobiotic. Groups CT-0.05, CT-0.1, and CT-0.25 received the phytobiotic in their drinking water in the amount of 0.05, 0.1, and 0.2 mL/L, respectively, at days 1–42 of life (continuous application, CT). The birds in groups PT-0.05, PT-0.5, and PT-0.25 received the phytobiotic in the same amounts, but only at days 1–7, 15–21, and 29–35 of life (periodic application, PT). Selected antioxidant and biochemical parameters were determined in the blood of the chickens, as well as parameters of immune status and redox status. The morphology of the intestinal epithelium, composition of the microbiome, and production parameters of chickens receiving the phytobiotic in their drinking water were determined as well. The addition of a phytobiotic containing cinnamon oil and citric acid to the drinking water of broiler chickens at a suitable dosage and for a suitable time can beneficially modify the microbiome composition and morphometry of the small intestine (total number of fungi p < 0.001, total number of aerobic bacteria p < 0.001; and total number of coliform bacteria p < 0.001 was decreased) improving the immunity and growth performance of the chickens (there occurred a villi lengthening p = 0.002 and crypts deepening p = 0.003). Among the three tested dosages (0.05, 0.1, and 0.25 mL/L of water) of the preparation containing cinnamon oil, the dosage of 0.25 mL/L of water administered for 42 days proved to be most beneficial. Chickens receiving the phytobiotic in the amount of 0.25 mL/L had better growth performance, which was linked to the beneficial effect of the preparation on the microbiome of the small intestine, metabolism (the HDL level p = 0.017 was increased; and a decreased level of total cholesterol (TC) p = 0.018 and nonesterified fatty acids (NEFA) p = 0.007, LDL p = 0.041, as well as triacylglycerols (TAG) p = 0.014), and immune (the level of lysozyme p = 0.041 was increased, as well as the percentage of phagocytic cells p = 0.034, phagocytosis index p = 0.038, and Ig-A level p = 0.031) and antioxidant system (the level of LOOH p < 0.001, MDA p = 0.002, and the activity of Catalase (CAT) p < 0.001 were decreased, but the level of ferric reducing ability of plasma (FRAP) p = 0.029, glutathione p = 0.045 and vitamin C p = 0.021 were increased).


EFSA Journal ◽  
2020 ◽  
Vol 18 (8) ◽  
Author(s):  
◽  
Maria Anastassiadou ◽  
Giovanni Bernasconi ◽  
Alba Brancato ◽  
Luis Carrasco Cabrera ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document