scholarly journals The acute effect of different specific warm-up intensity on one repeat maximum squat performance on basketball players

2021 ◽  
Vol 25 (5) ◽  
pp. 313-318
Author(s):  
Özgür Eken

Background and Study Aim. Squat exercises have some advantages in terms of time, practice and energy costs. It is also an exercise method used in training plan in terms of development of jumping ability in basketball players. Squat performance may vary depending on warm-up types and intensity. It was aimed to determine the effect of different specific warm-up intensities on 1-maximum repetition squat performance (1-RM) on basketball players. Materials and Methods. The sample group of the study consisted of 10 men (age: 22.90 ± 1.44 years, height: 188.10 ± 8.06 cm, body weight: 77.92 ± 13.41 kg, BMI: 21.70 ± 2.83), who played basketball regularly for at least 3 years. This group performed 3 different specific warm up intensities on non-consecutive days. Warm up protocols were determined as follows: light jogging for only 5 minutes (NSW), light jogging and % 40 intensity specific warm up (LISW), light jogging and % 80 intensity specific warm up (HISW). Results. Participants' 1-RM squat performance was found to be statistically different between NSW (91.10 kg), LISW (95.00 kg), HISW (100,50 kg) respectively (p<0.05). Additionally, 1-RM squat performance values were observed highest after HISW. Rate perceived exertion (RPE) and body temperature (BT) were found highest after HISW. Conclusion. As a result of this study, HISW are recommended to basketball coaches and basketball players in order to get more performance before the squat movement.

2015 ◽  
Vol 46 (1) ◽  
pp. 167-175 ◽  
Author(s):  
Vytautas Pliauga ◽  
Sigitas Kamandulis ◽  
Gintarė Dargevičiūtė ◽  
Jan Jaszczanin ◽  
Irina Klizienė ◽  
...  

AbstractDespite extensive data regarding the demands of playing basketball, the relative importance of factors that cause fatigue and muscle potentiation has been explored only tentatively and remains unclear. The aim of this experimental field study was to assess changes in leg muscle power and relate these changes to body temperature modifications and indices of exercise-induced muscle damage in response to a simulated basketball game. College-level male basketball players (n=10) were divided into two teams to play a simulated basketball game. Ten-meter sprint and vertical counter-movement jump tests, core body temperature and creatine-kinase activity were measured within 48 h after the game. The participants’ body temperatures increased after a warm-up (1.9%, p<0.05), continued to increase throughout the game, and reached 39.4 ± 0.4°C after the fourth quarter (p<0.05). The increase in temperature during the warm-up was accompanied by an improvement in the 10-meter sprint time (5.5%, p<0.05) and jump height (3.8%, p<0.05). The players were able to maintain leg power up to the fourth quarter, i.e., during the major part of the basketball game. There was a significant increase in creatine-kinase at 24 h (>200%, p<0.05) and 48 h (>30%, p<0.05) after the game, indicating damage to the players’ muscles. The basketball players’ sprint and jump performance appear to be at least in part associated with body temperature changes, which might contribute to counteract fatigue during the larger part of a basketball game.


Sports ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 55
Author(s):  
Dimitrios Petrakis ◽  
Eleni Bassa ◽  
Anastasia Papavasileiou ◽  
Anthi Xenofondos ◽  
Dimitrios A. Patikas

The aim of this study was to examine the acute effect of backward running (BwR) during warm-up on a 20-m sprint of boys’ performance, compared to forward running (FwR). Fourteen recreationally active preadolescent boys (aged 12.5 ± 0.5 years) were examined in 3 protocols: warm-up (control condition), warm-up with 3 × 10 m additional BwR sprints and warm-up with 3 × 10 m additional FwR sprints. Participants were evaluated 4 minutes after each protocol on a 20-m sprint and intermediate distances, as well as the rate of perceived exertion (RPE). Sprint speed across 10-20 m was significantly higher for the BwR warm-up compared to the regular warm-up (p < 0.05) and a significantly higher RPE after the BwR and FwR protocols compared to the control condition was recorded (p < 0.05). No significant difference was detected across the distances 0–5, 5–10, 0–10 and 0–20 m. Although adding 3 × 10-m sprints of BwR or FwR after the warm-up did not enhance performance in a 20 m sprint of preadolescent boys, the positive effect of BwR across 10–20 m distance suggests that BwR could be an alternative means for enhancing performance for certain phases of a sprint for this age. However, preadolescent boys’ response to different sprint conditioning exercise stimuli and the optimization of rest time to maximize performance remain to be determined.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4250 ◽  
Author(s):  
Giuseppe Marcolin ◽  
Nicola Camazzola ◽  
Fausto Antonio Panizzolo ◽  
Davide Grigoletto ◽  
Antonio Paoli

Background In basketball a maximum accuracy at every game intensity is required while shooting. The aim of the present study was to investigate the acute effect of three different drill intensity simulation protocols on jump shot accuracy in expert and junior basketball players. Materials & Methods Eleven expert players (age 26 ± 6 yrs, weight 86 ± 11 kg, height 192 ± 8 cm) and ten junior players (age 18 ± 1 yrs, weight 75 ± 12 kg, height 184 ± 9 cm) completed three series of twenty jump shots at three different levels of exertion. Counter Movement Jump (CMJ) height was also measured after each series of jump shots. Exertion’s intensity was induced manipulating the basketball drills. Heart rate was measured for the whole duration of the tests while the rating of perceived exertion (RPE) was collected at the end of each series of shots. Results Heart rate and rating of perceived exertion (RPE) were statistically different in the three conditions for both expert and junior players. CMJ height remained almost unchanged in both groups. Jump shot accuracy decreased with increasing drills intensity both in experts and junior players. Expert players showed higher accuracy than junior players for all the three levels of exertion (83% vs 64%, p < 0.001; 75% vs 57%, p < 0.05; 76% vs 60%, p < 0.01). Moreover, for the most demanding level of exertion, experts showed a higher accuracy in the last ten shots compared to the first ten shots (82% vs 70%, p < 0.05). Discussion Experts coped better with the different exertion’s intensities, thus maintaining a higher level of performance. The introduction of technical short bouts of high-intensity sport-specific exercises into skill sessions should be proposed to improve jump shot accuracy during matches.


Proceedings ◽  
2019 ◽  
Vol 25 (1) ◽  
pp. 28
Author(s):  
Petrakis ◽  
Bassa ◽  
Papavasileiou

AIM: Forward and backward sprint are two types of locomotion commonly used in sports. The purpose of the present study was to examine the acute effect of two post-activation potentiation sprint protocols, including the aforementioned types of locomotion, in subsequent 20-m sprint performance (SP) and the possible fatigue caused by them in preadolescent boys. MATERIAL & METHOD: Fourteen recreationally active preadolescent boys (aged 12.49 ± 0.52 years) volunteered to participate in the study. Boys’ SP was evaluated randomly on three non-consecutive days. SP was evaluated 4 min after (a) a typical warm-up (3 min jogging and dynamic stretching), (b) the typical warm-up followed by 3 x 10 m forward sprint and (c) the typical warm-up followed by 3 × 10 m backward sprint. Τhe Microgate Witty Wireless Training Timer was used for the evaluation of SP and the 10-degree OMNI scale for the evaluation of the rate of perceived exertion. RESULTS: ANOVA with repeated measures indicated no statistically significant effect of protocol on the 0–5, 0–10 and 0–20 m SP (p > 0.05). On the contrary, it was found that the protocols in which 3 × 10 m forward or backward sprint was incorporated caused statistically significant greater fatigue than the control protocol (p < 0.001), without any differences between them. CONCLUSIONS: The implementation of three 10-m sprints, either forward or backward, to a standard warm-up does not cause acute improvement in 20-m sprint performance in preadolescent boys, as both protocols cause greater fatigue than a typical warm-up. Therefore, their addition to warm-up of preadolescent boys is not recommended.


2018 ◽  
Vol 13 (8) ◽  
pp. 1067-1074 ◽  
Author(s):  
Daniele Conte ◽  
Nicholas Kolb ◽  
Aaron T. Scanlan ◽  
Fabrizio Santolamazza

Purpose: To characterize the weekly training load (TL) and well-being of college basketball players during the in-season phase. Methods: Ten (6 guards and 4 forwards) male basketball players (age 20.9 [0.9] y, stature 195.0 [8.2] cm, and body mass 91.3 [11.3] kg) from the same Division I National Collegiate Athletic Association team were recruited to participate in this study. Individualized training and game loads were assessed using the session rating of perceived exertion at the end of each training and game session, and well-being status was collected before each session. Weekly changes (%) in TL, acute-to-chronic workload ratio, and well-being were determined. Differences in TL and well-being between starting and bench players and between 1-game and 2-game weeks were calculated using magnitude-based statistics. Results: Total weekly TL and acute-to-chronic workload ratio demonstrated high week-to-week variation, with spikes up to 226% and 220%, respectively. Starting players experienced a higher (most likely negative) total weekly TL and similar (unclear) well-being status compared with bench players. Game scheduling influenced TL, with 1-game weeks demonstrating a higher (likely negative) total weekly TL and similar (most likely trivial) well-being status compared with 2-game weeks. Conclusions: These findings provide college basketball coaches information to optimize training strategies during the in-season phase. Basketball coaches should concurrently consider the number of weekly games and player status (starting vs bench player) when creating individualized periodization plans, with increases in TL potentially needed in bench players, especially in 2-game weeks.


2014 ◽  
Vol 9 (5) ◽  
pp. 851-856 ◽  
Author(s):  
Aaron T. Scanlan ◽  
Neal Wen ◽  
Patrick S. Tucker ◽  
Nattai R. Borges ◽  
Vincent J. Dalbo

Purpose:To compare perceptual and physiological training-load responses during various basketball training modes.Methods:Eight semiprofessional male basketball players (age 26.3 ± 6.7 y, height 188.1 ± 6.2 cm, body mass 92.0 ± 13.8 kg) were monitored across a 10-wk period in the preparatory phase of their training plan. Player session ratings of perceived exertion (sRPE) and heart-rate (HR) responses were gathered across base, specific, and tactical/game-play training modes. Pearson correlations were used to determine the relationships between the sRPE model and 2 HR-based models: the training impulse (TRIMP) and summated HR zones (SHRZ). One-way ANOVAs were used to compare training loads between training modes for each model.Results:Stronger relationships between perceptual and physiological models were evident during base (sRPE-TRIMP r = .53, P < .05; sRPE-SHRZ r = .75, P < .05) and tactical/game-play conditioning (sRPE-TRIMP r = .60, P < .05; sRPE-SHRZ r = .63; P < .05) than during specific conditioning (sRPE-TRIMP r = .38, P < .05; sRPE-SHRZ r = .52; P < .05). Furthermore, the sRPE model detected greater increases (126–429 AU) in training load than the TRIMP (15–65 AU) and SHRZ models (27–170 AU) transitioning between training modes.Conclusions:While the training-load models were significantly correlated during each training mode, weaker relationships were observed during specific conditioning. Comparisons suggest that the HR-based models were less effective in detecting periodized increases in training load, particularly during court-based, intermittent, multidirectional drills. The practical benefits and sensitivity of the sRPE model support its use across different basketball training modes.


Author(s):  
Jinshu Zeng ◽  
Jing Xu ◽  
Yuanhong Xu ◽  
Wu Zhou ◽  
Fei Xu

The aim of the study was to investigate the effects of 4-week small-sided games (SSG) and high-intensity interval training with changes of direction (HIT-COD) on physical performance and specific technical skills in female collegiate basketball players. Nineteen players were divided into SSG (n = 9) and HIT-COD (n = 10) groups, that performed either SSG or HIT-COD three times per week for 4 weeks during the pre-season. Players’ heart rate (HR) and perceived exertion responses (RPE) were assessed during the intervention. Before and after the intervention period, performances were assessed with 30-15 intermittent fitness test (30-15IFT), repeated sprint ability (RSA) test, modified agility T-test (MAT), countermovement jump (CMJ), 20-m sprint, shooting accuracy test, 1 min shooting test, passing test, defensive movement test and control dribble test. Both training interventions led to similar physiological and perceived exertion responses, showing no significant differences in HR ( P = .49, d = 0.2) and RPE ( P = .77, d = 0.1) between groups. Significant improvements were observed in 30-15IFT (SSG: 4.1%, d = 1.5; HIT-COD: 4.2%, d = 1.7), RSAmean (SSG: −2.2%, d = 1.0; HIT-COD: −1.9%, d = 1.0), RSAbest (SSG: −2.0%, d = 0.9; HIT-COD: −2.1%, d = 1.1), MAT (SSG: −7.2%, d = 1.7; HIT-COD: 5.7%, d = 1.5), defensive movement test (SSG: −5.1%, d = 2.1; HIT-COD: −5.8%, d = 1.8) and control dribble test (SSG: −3.4%, d = 1.0; HIT-COD: −2.6%, d = 1.0). The only significant group × time interaction was found ( P = .032, [Formula: see text] = 0.24), with SSG improving 1 min shooting (22.4%, d = 1.0) and HIT-COD performing slightly worse (−2.6%, d = 0.1) after a 4-week intervention. The current study suggests that using SSG is more effective than HIT-COD for female collegiate basketball players in pre-season, since SSG improves physical performance and basketball-specific movements as well as shooting abilities after a 4-week intervention.


2021 ◽  
Vol 6 (3) ◽  
pp. 64
Author(s):  
Corinne E. Meglic ◽  
Caroline M. Orman ◽  
Rebecca R. Rogers ◽  
Tyler D. Williams ◽  
Christopher G. Ballmann

The purpose of this study was to investigate the effects of listening to preferred versus non-preferred warm-up music on anaerobic sprint performance in Division I NCAA female athletes. Female collegiate athletes (n = 14) were recruited for this study. In a counterbalanced, crossover study design, participants completed two separate visits, each with a different warm-up music condition: preferred (Pref) or non-preferred (Non-pref). During each visit, participants completed a 3 min standardized cycling warm-up at 50 Watts while listening to Pref or Non-pref music. Following this, participants completed 3 × 15 s Wingate Anaerobic Tests (WAnTs) with a 2 min active recovery period in between tests. Motivation to exercise was measured immediately following the warm-up (WU), WAnT1, WAnT2, and WAnT3. The rate of perceived exertion (RPE) was also measured after each WAnT. Each visit was separated by a minimal recovery period of 48 h. Mean power, total work, RPE, and motivation were analyzed. Mean power (p = 0.044; d = 0.91) and total work (p = 0.045; d = 0.78) were significantly higher during the Pref music condition versus Non-pref. RPE remained unchanged regardless of condition (p = 0.536; d = 0.01). Motivation was significantly higher with Pref warm-up music compared to Non-pref (p < 0.001; d = 1.55). These results show that listening to Pref warm-up music has an ergogenic benefit during repeated sprints in comparison to Non-pref music and improves motivation to exercise. Listening to warm-up music prior to high-intensity repeated exercise may aid in optimizing performance and training in collegiate athletes.


Sign in / Sign up

Export Citation Format

Share Document