scholarly journals Ge-on-Si Photonics for Mid-infrared Sensing Applications

MRS Advances ◽  
2016 ◽  
Vol 1 (48) ◽  
pp. 3269-3279
Author(s):  
K. Gallacher ◽  
L. Baldassarre ◽  
A. Samarelli ◽  
R. W. Millar ◽  
A. Ballabio ◽  
...  

ABSTRACTThere is significant interest to develop cheap CMOS compatible sensors that operate in the mid-infrared (MIR). To meet these requirements, Ge-on-Si is proving to be an exciting platform. There is the potential to realize waveguide integrated quantum well infrared photodetectors (QWIPs) based on Ge quantum wells (QWs). Intersubband absorption from p-Ge QWs has been demonstrated in the important atmospheric transmission window of 8-13 μm. An alternative strategy for sensing in the MIR is demonstrated through highly n-type doped Ge plasmonic antennas. These antennas demonstrate vibrational sensing of polydimethylsiloxane (PDMS) spin coated layers at 12.5 μm wavelength. These demonstrate enhanced sensing capabilities due to the localized hot spots of the antenna resonant modes.

2018 ◽  
Vol 26 (24) ◽  
pp. 31861 ◽  
Author(s):  
Jacopo Frigerio ◽  
Andrea Ballabio ◽  
Michele Ortolani ◽  
Michele Virgilio

2018 ◽  
Vol 1 (11) ◽  
pp. 6454-6462 ◽  
Author(s):  
Mai Desouky ◽  
M. R. Anisur ◽  
Maria Alba ◽  
R. K. Singh Raman ◽  
Mohamed. A. Swillam ◽  
...  

2012 ◽  
Vol 34 (7) ◽  
pp. 1107-1111 ◽  
Author(s):  
M. Motyka ◽  
K. Ryczko ◽  
G. Sęk ◽  
F. Janiak ◽  
J. Misiewicz ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5600 ◽  
Author(s):  
Octavian Dănilă ◽  
Doina Mănăilă-Maximean ◽  
Ana Bărar ◽  
Valery A. Loiko

We report simulations on the spectral behavior of non-layered gold-silicon and all-silicon frequency-selective metasurfaces in an asymmetric element configuration in the mid-infrared spectral window of 5–5.8 μm. The non-layered layout is experimentally feasible due to recent technological advances such as nano-imprint and nano-stencil lithography, and the spectral window was chosen due to the multitude of applications in sensing and imaging. The architecture exhibits significant resonance in the window of interest as well as extended tunability by means of variation of cell element sizes and relative coordinates. The results indicate that the proposed metasurface architecture is a viable candidate for mid-infrared absorbers, sensors and imaging systems.


2018 ◽  
Vol 17 ◽  
pp. 02005 ◽  
Author(s):  
Zecen Zhang ◽  
Geok Ing Ng ◽  
Ting Hu ◽  
Haodong Qiu ◽  
Xin Guo ◽  
...  

A one-time etching suspended microracetrack resonator with lateral sub-wavelength-grating (SWG) metamaterial cladding is theoretically and experimentally demonstrated on commercial 340 nm-thick-top-silicon silicon-on-insulator (SOI) platform for mid-infrared (MIR) bio-chemical sensing applications. The suspended structure can offer a larger exposed area of waveguides with the testing chemicals as well as a decent sensitivity. And the one-time etching process also eases the fabrication. The suspended waveguide is optimized with a balance between propagation loss and the sensitivity. The suspended microracetrack resonator is experimentally measured at 2 μm wavelength and well fitted with an extinction ratio (ER) of 12.3 dB and a full-width-at-half-maximum (FWHM) of 0.12 nm, which corresponds to a quality factor (Q factor) of 16600. With the equivalent refractive index method and a specially developed numerical model, the expected sensitivities of fundamental TE and TM mode were calculated as 58 nm/RIU and 303 nm/RIU respectively. This one-time etching suspended microracetrack resonator shows great potential in MIR optical bio-chemical sensing applications.


1992 ◽  
Vol 39 (11) ◽  
pp. 2646
Author(s):  
E.B. Dupont ◽  
D. Delacourt ◽  
M. Papuchon

2021 ◽  
Vol 11 (4) ◽  
pp. 1801
Author(s):  
Takuro Fujii ◽  
Tatsurou Hiraki ◽  
Takuma Aihara ◽  
Hidetaka Nishi ◽  
Koji Takeda ◽  
...  

The rapid increase in total transmission capacity within and between data centers requires the construction of low-cost, high-capacity optical transmitters. Since a tremendous number of transmitters are required, photonic integrated circuits (PICs) using Si photonics technology enabling the integration of various functional devices on a single chip is a promising solution. A limitation of a Si-based PIC is the lack of an efficient light source due to the indirect bandgap of Si; therefore, hybrid integration technology of III-V semiconductor lasers on Si is desirable. The major challenges are that heterogeneous integration of III-V materials on Si induces the formation of dislocation at high process temperature; thus, the epitaxial regrowth process is difficult to apply. This paper reviews the evaluations conducted on our epitaxial growth technique using a directly bonded III-V membrane layer on a Si substrate. This technique enables epitaxial growth without the fundamental difficulties associated with lattice mismatch or anti-phase boundaries. In addition, crystal degradation correlating with the difference in thermal expansion is eliminated by keeping the total III-V layer thickness thinner than ~350 nm. As a result, various III-V photonic-device-fabrication technologies, such as buried regrowth, butt-joint regrowth, and selective area growth, can be applicable on the Si-photonics platform. We demonstrated the growth of indium-gallium-aluminum arsenide (InGaAlAs) multi-quantum wells (MQWs) and fabrication of lasers that exhibit >25 Gbit/s direct modulation with low energy cost. In addition, selective-area growth that enables the full O-band bandgap control of the MQW layer over the 150-nm range was demonstrated. We also fabricated indium-gallium-arsenide phosphide (InGaAsP) based phase modulators integrated with a distributed feedback laser. Therefore, the directly bonded III-V-on-Si substrate platform paves the way to manufacturing hybrid PICs for future data-center networks.


2009 ◽  
Vol 52 (6) ◽  
pp. 220-223 ◽  
Author(s):  
Fabrizio Castellano ◽  
Rita C. Iotti ◽  
Fausto Rossi ◽  
Jerome Faist ◽  
Emmanuel Lhuillier ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document