Silver Growth on AFM Tip Apexes from Silver Nitrate Solutions Triggered by Focused-Ion-Beam Irradiation

MRS Advances ◽  
2016 ◽  
Vol 1 (25) ◽  
pp. 1865-1869 ◽  
Author(s):  
Masayuki Nishi ◽  
Daisuke Teranishi ◽  
Hiroki Itasaka ◽  
Masahiro Shimizu ◽  
Kazuyuki Hirao

ABSTRACTSilver nanostructures are directly grown on the apex of commercially available silicon AFM probes using our area-selective electroless deposition: the apex of a silicon AFM probe is irradiated using a focused ion beam (FIB), and then the FIB-irradiated AFM probe is exposed to a pure AgNO3aqueous solution. With this method, a silver nanostructure selectively grows on the tip apex where the native oxide layer has been removed in response to FIB irradiation. Silver ions are reduced by the electrons flowing from the silicon probes into the solution through the FIB-irradiated area owing to the difference in Fermi energy between silicon and the solution. The morphology of the growing silver depends on the concentration of both AgNO3and the electrons. The growth of a gold nanoflower is also demonstrated on the apex of a silicon AFM probe.

1990 ◽  
Vol 198 ◽  
Author(s):  
Y. L. Wang ◽  
L. R. Harriott ◽  
H. Temkin

ABSTRACTWe have successfully used an ultrathin (20-50 Å) native oxide layer on the surface of InP as an etch mask for transferring patterns onto the substrate. The oxide mask is grown in situ in O2 atmosphere, and the mask pattern is created by locally removing the oxide with a focused ion beam. Depending on the thickness of the mask, the required ion dose varies from 2×1014 to 2×1015 Ga/cm2. C12 etches the exposed areas selectively. Features as deep as 3 microns have been produced with such an ultrathin mask. High quality InGaAs and InP epitaxial layers have been overgrown on such patterned substrate. We have studied the formation and desorption of the oxide mask with Auger analysis. We also demonstrate that the secondary charged particle emission from a substrate during ion exposure provides a useful signal for the determination of the required dose.


2015 ◽  
Vol 665 ◽  
pp. 169-172
Author(s):  
Yoshimasa Takahashi ◽  
Hikaru Kondo ◽  
Kazuya Aihara ◽  
Masanori Takuma ◽  
Kenichi Saitoh ◽  
...  

The strength against interfacial fracture initiation from a free-edge of Si/Cu micro-components was evaluated. The micro-scale cantilever specimens containing dissimilar interfaces were fabricated with a focused-ion-beam (FIB) technique, and they were loaded with a quantitative nanoindenter holder operated in a transmission electron microscope (TEM). The specimens were successfully fractured along the Si/Cu interface, and the critical loads at fracture were measured. The critical stress distribution near the free-edge was evaluated with the finite element method (FEM). The near-edge stress distributions of 90°/90°-shaped specimens were scattered while those of 135°/135°-shaped specimens were in good agreement despite the difference in specimen dimensions. Such a difference was discussed in terms of the relation between the magnitude of stress singularity and the microstructures of material.


1991 ◽  
Author(s):  
Yuh-Lin Wang ◽  
Henryk Temkin ◽  
Lloyd R. Harriott ◽  
Robert A. Hamm

2014 ◽  
Vol 1712 ◽  
Author(s):  
Keith A. Brown ◽  
Robert M. Westervelt

ABSTRACTHerein, we detail the fabrication of atomic force microscope (AFM) probes that have two and three coaxial electrodes at their tips. This fabrication strategy leverages the availability of conductive AFM probes and encompasses a general method for processing their complex and delicate structure through the deposition of insulating and conductive layers by shadow masked chemical and physical vapor deposition, respectively. Focused ion beam milling is used to expose the two electrode (coaxial) or three electrode (triaxial) structures at the tip of the AFM probe. Finally, we discuss new imaging modalities enabled by these probes including electrically-driven contact resonance imaging for nanoscale mechanical characterization, imaging the local dielectric constant by quantifying the dielectrophoretic force, and trapping functional particles at the tip of a probe using dielectrophoresis. These imaging techniques illustrate the generality and utility of this fabrication approach and suggest that such probes could be widely applied to image many nanoscale materials.


2015 ◽  
Vol 21 (2) ◽  
pp. 472-479 ◽  
Author(s):  
Clifford S. Todd ◽  
Douglas E. Beyer

AbstractPolyvinylidene chloride (PVDC) co-polymer resins are commonly formulated with a variety of solid additives for the purpose of processing or stabilization. A homogeneous distribution of these additives during handling and processing is important. The Dow Chemical Company developed a process to incorporate solid materials in latex form onto PVDC resin bead surfaces using a coagulation process. In this context, we present a method to characterize the distribution and thickness of these latex coatings. The difference in backscattered electron signal from the higher mean atomic number PVDC core and lower atomic number latex coating in conjunction with scanning electron microscopy (SEM) imaging using a range of accelerating voltages was used to characterize latex thickness and distribution across large numbers of beads quickly and easily. Monte Carlo simulations were used to quantitatively estimate latex thickness as a function of brightness in backscatter electron images. This thickness calibration was validated by cross-sectioning using a focused ion-beam SEM. Thicknesses from 100 nm up to about 1.3 µm can be determined using this method.


Author(s):  
V.M. Mikoushkin ◽  
V.V. Bryzgalov ◽  
S.Yu. Nikonov ◽  
A.P. Solonitsyna ◽  
D.E. Marchenko

AbstractDetailed information on GaAs oxide properties is important for solving the problem of passivating and dielectric layers in the GaAs-based electronics. The elemental and chemical compositions of the native oxide layer grown on the atomically clean surface of an n -GaAs (100) wafer etched by Ar^+ ions have been studied by synchrotron-based photoelectron spectroscopy. It has been revealed that the oxide layer is essentially enriched in the Ga_2O_3 phase which is known to be a quite good dielectric as compared to As_2O_3. The gallium to arsenic ratio reaches the value as high as [Ga]/[As] = 1.5 in the course of oxidation. The Ga-enrichment occurs supposedly due to diffusion away of As released in preferential oxidation of Ga atoms. A band diagram was constructed for the native oxide nanolayer on the n -GaAs wafer. It has been shown that this natural nanostructure has features of a p–n heterojunction.


MRS Advances ◽  
2017 ◽  
Vol 2 (42) ◽  
pp. 2287-2294 ◽  
Author(s):  
Kyle Culhane ◽  
Ke Jiang ◽  
Aaron Neumann ◽  
Anatoliy O. Pinchuk

ABSTRACTA laser deposition technique, based on the photo-reduction of silver ions from an aqueous solution, was used to fabricate silver nanostructure surfaces on glass cover slips. The resulting silver nanostructures exhibited plasmonic properties, which show promise in applications towards surface enhanced Raman spectroscopy (SERS). Using the standard thiophenol, the enhancement factor calculated for the deposits was approximately ∼106, which is comparable to other SERS-active plasmonic nanostructures fabricated through more complex techniques, such as electron beam lithography. The silver nanostructures were then employed in the enhancement of Raman signals from N-butyryl-L-homoserine lactone, a signaling molecule relevant to bacteria quorum sensing. In particular, the work presented herein shows that the laser-deposited plasmonic nanostructures are promising candidates for monitoring concentrations of signaling molecules within biofilms containing quorum sensing bacteria.


1999 ◽  
Vol 605 ◽  
Author(s):  
Y. Ichikawa ◽  
S. Maekawa ◽  
K. Takashima ◽  
M. Shimojo ◽  
Y. Higo ◽  
...  

AbstractFracture behavior of micro-sized Ni-P Amorphous alloy specimens has been investigated using a newly developed mechanical testing machine. Specimens with dimensions of 10 × 12 × 50 μm were prepared by focused ion beam machining. Two types of specimens with different crack geometries were prepared. One specimen has a notch with root radius is 0.25 μtm and the other has a fatigue pre-crack. The shapes of the loaddisplacement curves are different for each type of specimen. The fracture strength of the specimens with a notch is higher than that with a fatigue pre-crack and the fracture surfaces of the specimens are also different for each type of specimen. This may be due to the difference in stress concentration at the crack (notch) tip, and indicates that even a notch with a root radius of 0.25 μm is not able to be regarded as a crack for micro-sized specimens. Therefore, the introduction of a fatigue pre-crack is essential for the evaluation of fracture toughness for such micro-sized specimens.


2010 ◽  
Vol 447-448 ◽  
pp. 174-177 ◽  
Author(s):  
Hou Xiao Wang ◽  
Wei Zhou ◽  
Er Ping Li

Nano-precision machining using focused ion beam (FIB) is widely applied in many fields. So far, FIB-based nanofabrication for specific nanoscale applications has become an interesting topic to realize more diversities for nano-construction. Through FIB machining, we can easily achieve the required nano- and micro-scale patterning, device fabrication, and preparation of experimental samples. Nowadays, there is an increasing trend to learn from nature to design novel multi-functional materials and devices. Thus, more interestingly, another advantage of FIB is that it can be conveniently used to analyze the natural photonic structures, e.g., those in the butterfly which exhibits amazing optical phenomena due to sub-wavelength structural color. Accordingly, in the present study, structural analyses for butterfly wings were carried out using FIB. It is found that the photonic structures for the backside and frontside of the butterfly wing studied differ considerably. The difference accounts for the different colors on the dorsal and ventral sides of butterfly wings.


Author(s):  
Yang Ju ◽  
Motohiro Hamada ◽  
Atsushi Hosoi ◽  
Akifumi Fujimoto

In order to develop a new structure microwave probe, the fabrication of the atomic force microscope (AFM) probe on a GaAs wafer was studied. The fabricated probe had a tip of 8 μm high and curvature radius approximately 30 nm. The dimensions of the cantilever are 250 × 30 × 15 μm. A waveguide was introduced by evaporating Au film on the top and bottom surfaces of the GaAs AFM probe. The open structure of the waveguide at the tip of the probe was introduced by using focused ion beam (FIB) fabrication. To improve the resolution of AFM measurement, only the metal film was removed at the end of the probe tip. AFM topography of a grating sample was measured by the fabricated probe. As a result, it was found that the resolution of AFM measurement and the ratio of signal to noise were enhanced.


Sign in / Sign up

Export Citation Format

Share Document