Role of Pre-Layer Mo Films in Microstructural and Morphological Properties of Over-Layer CIGS Films

MRS Advances ◽  
2017 ◽  
Vol 2 (53) ◽  
pp. 3215-3224 ◽  
Author(s):  
Hamda A. Al-Thani ◽  
Falah S. Hasoon

ABSTRACTThis study focuses on establishing a microstructural and morphological correlation between CIGS films and its precursor layer of Molybdenum (Mo) coated soda-lime glass (SLG). Therefore, variations in the morphology and microstructural properties of Mo thin films, using DC planar magnetron sputtering, were induced systematically by varying the sputtering pressure from 0.6 to 16 mT with a sputtering power density of 1.2 W/cm2. Subsequently, under fixed deposition conditions (deposition rate and substrate temperature), a growth of Cu(In,Ga)Se2 (CIGS) films was carried out on the Mo-coated SLG substrates, using the 3-stage growth process of the physical vapor deposition (PVD) technique.High-Resolution Scanning Electron Microscopy (HRSEM) was used to examine the Mo and CIGS films morphology. X-Ray Diffraction (XRD) was applied to study in detail the microstructure of Mo and CIGS films. Where, the films’ crystal structure including the preferred orientation and the lattice parameters were determined by the θ/2θ XRD technique and by applying Cohen’s least-square method. Furthermore, Atomic Force Microscopy (AFM) was used to determine the root-mean-square (RMS) surface roughness of the CIGS films.

2001 ◽  
Vol 16 (2) ◽  
pp. 394-399 ◽  
Author(s):  
S. Nishiwaki ◽  
T. Satoh ◽  
Y. Hashimoto ◽  
T. Negami ◽  
T. Wada

Cu(In,Ga)Se2(CIGS) thin films were prepared at substrate temperatures of 350 to 500 °C. The (In,Ga)2Se2 precursor layers were deposited on Mo coated soda-lime glass and then exposed to Cu and Se fluxes to form CIGS films. The surface composition was probed by a real-time composition monitoring method. The CIGS films were characterized by x-ray diffraction, energy dispersive x-ray spectroscopy, secondary ion mass spectroscopy, and atomic force microscopy. The transient formation of a Cu–Se phase with a high thermal emissivity was observed during the deposition of Cu and Se at a substrate temperature of 350 °C. Faster diffusion of In than Ga from the (In,Ga)2Se3 precursor to the newly formed CIGS layer was observed. A growth model for CIGS films during the deposition of Cu and Se onto (In,Ga)2Se3 precursor is proposed. A solar cell using a CIGS film prepared at about 350 °C showed an efficiency of 12.4%.


2017 ◽  
Vol 2017 ◽  
pp. 1-7
Author(s):  
William Vallejo ◽  
Carlos Diaz-Uribe ◽  
G. Gordillo

In this work, we fabricated system In(O,OH)S/i-ZnO/n+-ZnO to be used as potential optical window in thin films solar cells. i-ZnO/n+-ZnO thin films were synthesized by reactive evaporation (RE) method and In(O,OH)S thin films were synthesized by chemical bath deposition (CBD) method; all thin films were deposited on soda lime glass substrates. Thin films were characterized through X-ray diffraction (XRD), atomic force microscopy (AFM), and spectral transmittance measurements. Structural results indicated that both thin films were polycrystalline; furthermore, morphological results indicated that both thin films coated uniformly soda lime glass substrate; besides, optical characterization indicated that system had more than 80% of visible radiation transmittance.


2014 ◽  
Vol 10 (20) ◽  
pp. 51-64 ◽  
Author(s):  
D.M. Devia ◽  
E. Restrepo-Parra ◽  
J.M. Velez-Restrepo

Tix Al1−xN coatings were grown using the triode magnetron sputtering technique varying the bias voltage between -40 V and -150V. The influence of bias voltage on structural and morphological properties was analyzed by means of energy dispersive spectroscopy, x-ray diffraction and atomic force microscopy techniques. As the bias voltage increased, an increase inthe Al atomic percentage was observed competing with Ti and producing structural changes. At low Al concentrations, the film presented a FCC crystalline structure; nevertheless, as Al was increased, the structure pre-sented a mix of FCC and HCP phases. On the other hand, an increase inbias voltage produced a decrease films thickness due to an increase in colli-sions. Moreover, the grain size and roughness were also strongly influencedby bias voltage.


2008 ◽  
Vol 8 (8) ◽  
pp. 4168-4171
Author(s):  
N. Gopalakrishnan ◽  
B. C. Shin ◽  
K. P. Bhuvana ◽  
J. Elanchezhiyan ◽  
T. Balasubramanian

Here, we present the fabrication of pure and GaN doped ZnO nanocrystallines on Si(111) substrates by KrF excimer laser. The targets for the ablation have been prepared by conventional ceramic method. The fabricated nanocrystallines have been investigated by X-ray diffraction, photoluminescence and atomic force microscopy. The X-ray diffraction analysis shows that the crystalline size of pure ZnO is 36 nmand it is 41 nmwhile doped with 0.8 mol% of GaN due to best stoichiometry between Zn and O. Photoluminescence studies reveal that intense deep level emissions have been observed for pure ZnO and it has been suppressed for the GaN doped ZnO structures. The images of atomic force microscope show that the rms surface roughness is 27 nm for pure ZnO and the morphology is improved with decrease in rms roughness, 18 nm with fine crystallines while doped with 1 mol% GaN. The improved structural, optical and morphological properties of ZnO nanocrystalline due to GaN dopant have been discussed in detail.


2011 ◽  
Vol 493-494 ◽  
pp. 473-476
Author(s):  
E.O. Lopez ◽  
F.F. Borghi ◽  
Alexandre Mello ◽  
J. Gomes ◽  
Antonella M. Rossi

In this present work, we characterize HAp thin films deposited by dual magnetron sputtering device DMS on silicon (Si/HAp). The sputtering RF power was varied from 90 watts to 120 watts and deposition times from 60 to 180 minutes. The argon and oxygen pressure were fixed at 5.0 mTorr and 1.0 mTorr, respectively. Grazing incidence X-ray diffraction (GIXRD) from synchrotron radiation, infrared spectroscopy (FTIR) and atomic force microscopy (AFM) were used for the structural characterization. At lower deposition times, a crystalline phase with preferential orientation along apatite (002) and a disordered nanocrystalline phase were identified. The coating crystallinity was improved with the increase of the deposition time besides the sputtering power.


2013 ◽  
Vol 770 ◽  
pp. 177-180 ◽  
Author(s):  
Nirun Witit-Anun ◽  
Jakrapong Kaewkhao ◽  
Surasing Chaiyakun

Aluminum nitride (AlN) thin films have been deposited on the glass slide and Si-wafer by reactive DC magnetron sputtering technique at different sputtering power. The as-deposited films have been characterized by grazing-incidence X-ray diffraction (GIXRD), atomic force microscopy (AFM) and optical transmittance, respectively. The results show that the as-deposited films were transparent and have high transmittance in visible regions. The crystal structure from XRD results show that the as-deposited films are amorphous with low sputtering power and turn to crystal structure with high sputtering power, which showed orientation of AlN structure corresponding to the AlN(1 0 0), AlN(1 0 1) and AlN(1 1 0). The roughness values and the films thickness from AFM was varied from 0.4 nm to 3.9 nm and 199 nm to 905 nm, respectively. The optical constants namely the refractive index n and the extinction coefficient k, were determined from transmittance spectrum in the visible regions by using envelope method. For 500 nm, n and k, were in the range of 1.8 2.0 and 0.014 0.004 respectively.


2007 ◽  
Vol 560 ◽  
pp. 41-46 ◽  
Author(s):  
Claus Guerra-Amaro ◽  
M. Hinojosa ◽  
E. Reyes-Melo ◽  
V. González

In the present work we discuss the self-affine properties of the fracture surfaces of sodalime glass obtained under quasi-static conditions. The fracture surfaces are generated using a threepoint bending system in normal room conditions and under high humidity conditions. The surfaces were recorded both by Scanning Electron Microscopy and Atomic Force Microscopy, and their selfaffine properties are characterized using the Variable Bandwidth method. For both conditions it is observed that the major part of the fracture surface is occupied by the mirror zone. On the other hand, the self-affine analysis reveals that for both conditions the roughness exponent has values centred at around 0.58 with moderate dispersion, in agreement with previous results. Our findings support the hypothesis of the existence of a characteristic roughness exponent for quasi-static fracture with a value that is significantly lower than the value of 0.8 reported for rapid fracture conditions.


2000 ◽  
Vol 6 (S2) ◽  
pp. 722-723
Author(s):  
M. Li ◽  
C.B. Carter ◽  
M.A. Hillmyer ◽  
W.W. Gerberich

Reliability of thin polymer films is strongly dependent on interfacial adhesion. This paper concerns the application of indentation combined with atomic force microscopy (AFM) for the evaluation of polymer-non-polymer adhesion. Interfacial toughness calculations have been made using AFM measurement of geometry of delaminations induced by indentation. Fracture surfaces characterized with AFM are also presented here.The interface chosen for study is that between polystyrene (PS) and a glass substrate. Spin coating has been used to prepare PS films. PS, dissolved in toluene, was spun onto the soda-lime glass and then dried at 60°C for 3h to remove residual solvent. The thickness of the PS film was approximately 660nm. To enhance the driving force for delamination, poly(methyl methacrylate) (PMMA) overlayers were applied on top of the PS films. The PMMA overlayer, of thickness approximately 1.5 μm, was first solvent cast onto a second glass slide, floated off the glass onto deionized water, and then laid on top of a first glass substrate which had been coated with PS.


2021 ◽  
Vol 03 (03) ◽  
pp. 01-09
Author(s):  
Khamees D. MAHMOOD ◽  
Kadhim A. AADIM ◽  
Mohammed G. HAMMED

In this manuscript, CdO-NiO nanocomposites (in the form of thin film) with particular concentrations are paper using laser pulse deposition technique under the effect of different laser energies (300, 400, 500, and 600 mJ). Furthermore, the structural, morphological, and optical analyses are thoroughly investigated. In particular, well-oriented deposited films are observed by using X-ray diffraction technique, while the morphological properties are investigated using two different techniques namely field emission scanning electron microscopy and atomic force microscopy which have revealed small nanoparticles with approximate diameter of 50 nm and average surface roughness ranging between 6.5 and 20.3 nm for laser energies of 400 and 600 mJ, respectively. Continuously, the optical technique applied which used UV-Vis analysis has showed cut-off phenomenon at around 339 nm. In the meanwhile, the energy band gap for the deposited films was found to be within the range of 2.2 and 2.4 eV, as a result of different laser energies.


2020 ◽  
Vol 38 (2) ◽  
pp. 328-333
Author(s):  
Kimia Nikpasand ◽  
Seyed Mohammad Elahi ◽  
Amir Hossein SarI ◽  
Arash Boochani

AbstractCopper (Cu) and nickel (Ni) nanoparticles have been grown simultaneously on glass and silicon substrates by RF sputtering method to form three Cu/Ni nanocomposites at different deposition times. The existence of Cu and Ni peaks in the X-ray diffraction (XRD) profiles confirms the crystalline structure of samples with Cu and Ni atomic content which have also been characterized by Rutherford backscattering (RBS) method. Moreover, the structural and morphological properties of the prepared nanocomposites have been compared with respect to their morphologies by means of atomic force microscopy (AFM) analysis. In order to compare the surface roughness over different spatial frequency ranges and evaluate surface quality, power spectral density (PSD) of each sample has been extracted from AFM data and also, the experimental and theoretical results have been compared. The fractal nature of these nanocomposites has been finally discussed.


Sign in / Sign up

Export Citation Format

Share Document