Microstructure Design for Enhancement of Room-temperature Ductility in Multi-component TiAl Alloys

MRS Advances ◽  
2019 ◽  
Vol 4 (25-26) ◽  
pp. 1523-1529 ◽  
Author(s):  
Ryosuke Yamagata ◽  
Yotaro Okada ◽  
Hideki Wakabayashi ◽  
Hirotoyo Nakashima ◽  
Masao Takeyama

AbstractEffects of microstructure constituents of α2-Ti3Al/γ-TiAl lamellae, β-Ti grains and γ grains, with various volume fractions on room-temperature ductility of γ-TiAl based alloys have been studied. The ductility of the alloys containing β phase of about 20% in volume increases to more than 1% as the volume fraction of γ phase increases to 80%. However, γ single phase alloys show very limited ductility of less than 0.2%. The present results, thus, confirmed the significant contribution of β phase to enhancement of the room-temperature ductility in multi-component TiAl alloys.

Materials ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 2757 ◽  
Author(s):  
Ning Cui ◽  
Qianqian Wu ◽  
Zhiyuan Yan ◽  
Haitao Zhou ◽  
Xiaopeng Wang

In this paper, the microstructure, deformability, tensile properties, and phase hardness of the Ti–43Al–2Cr–0.7Mo–0.1Y alloy with a high β phase content were investigated. Microstructural analysis showed that the β phase precipitated not only at the colony boundaries but also inside the lamellae due to its high content. A high-quality forging stock was prepared through one-step noncanned forging. The total deformation reached above 80%, suggesting that the alloy has good hot deformability compared to other TiAl alloys. The deformed microstructure was composed of fine and equiaxed grains due to dynamic recrystallization. The high β phase content was shown to contribute to the decomposition of the initial coarse lamellae. Tensile testing showed that the alloy has good room-temperature ductility, even if the β phase content reaches above 20%. This is inconsistent with a previous study that showed that a large amount of the hard β phase is detrimental to the room-temperature ductility of TiAl alloys. Nanoindentation testing showed that the hardness of the β phase in the current alloy is about 6.3 GPa, which is much lower than that in the Nb-containing TiAl alloys. Low hardness benefits the compatible deformation among various phases, which could be the main reason for the alloy’s good room-temperature ductility. Additionally, the influence of various β stabilizers on the hardness of the β phase was also studied. The β phase containing Nb had the highest hardness, whereas the β phase containing Cr had the lowest hardness.


2007 ◽  
Vol 539-543 ◽  
pp. 3607-3612 ◽  
Author(s):  
Jeoung Han Kim ◽  
Jong Taek Yeom ◽  
Nho Kwang Park ◽  
Chong Soo Lee

The high-temperature deformation behavior of the single-phase α (Ti-7.0Al-1.5V) and α + β (Ti-6Al-4V) alloy were determined and compared within the framework of self-consistent scheme at various temperature ranges. For this purpose, isothermal hot compression tests were conducted at temperatures between 650°C ~ 950°C to determine the effect of α/β phase volume fraction on average flow stress under hot-working condition. The flow behavior of α phase was estimated from the compression test results of single-phase α alloy whose chemical composition is close to that of α phase of Ti-6Al-4V alloy. On the other hand, the flow stress of β phase in Ti-6Al-4V was predicted by using self-consistent method. The flow stress of α phase was higher than that of β phase above 750°C, while the β phase revealed higher flow stress than α phase at 650°C. Also, at temperature above 750°C, the predicted strain rate of β phase was higher than that of α phase. It was found that the relative strength between α and β phase significantly varied with temperature.


2013 ◽  
Vol 747-748 ◽  
pp. 38-43 ◽  
Author(s):  
Li Hua Chai ◽  
Liang Yang ◽  
Jian Peng Zhang ◽  
Zhi Yong Zhang ◽  
Lai Qi Zhang ◽  
...  

High Nb containing TiAl alloys have been investigated traditionally as potential high temperature structural materials because of their high strength, good oxidation and creep resistance. However, the poor ductility and fracture toughness at room temperature limit their application, which could be improved by controlling microstructure to get refine and homogeneous fully lamellar structure. In this study, a high Nb containing TiAl alloy alloying Mn, B and Y with refined microstructure was produced. The solidification path was analyzed by DSC and SEM microstructure of the alloy was observed, after heating at a certain temperature for 1-24hrs and then quenching in water. The dissolution of β phase was also investigated. The results showed that the β phase could decompose only by heating in single β or near α phase field.


2010 ◽  
Vol 654-656 ◽  
pp. 456-459 ◽  
Author(s):  
Thomas Schmoelzer ◽  
Svea Mayer ◽  
Frank Haupt ◽  
Gerald A. Zickler ◽  
Christian Sailer ◽  
...  

Intermetallic TiAl alloys with a significant volume fraction of the body-centered cubic β-phase at elevated temperatures have proven to exhibit good processing characteristics during hot-working. Being a strong β stabilizer, Mo has gained importance as an alloying element for so-called β/γ-TiAl alloys. Unfortunately, the effect of Mo on the appearing phases and their temperature dependence is not well known. In this work, two sections of the Ti-Al-Mo ternary phase diagram derived from experimental data are shown. These diagrams are compared with the results of in-situ high-temperature diffraction experiments using high-energy synchrotron radiation.


Author(s):  
L. S. Lin ◽  
G. W. Levan ◽  
S. M. Russell ◽  
C. C. Law

AEM examinations of a NiAlCo alloy of composition Ni-29 at.% Al-21 at.% Co after room temperature compression show that the microstructure consists of a twinned tetragonal matrix (L10, marked A in Figure 1a) and ordered fcc gamma prime precipitates (L12, marked B in Figure 1a) along grain boundaries. The compressive yield strengths of this alloy at room temperature and 760°C are 754 MPa and 163 MPa respectively. It also has superior room temperature ductility as compared to binary NiAl. An addition of 5 at.% Ti at the expense of Ni was made to this alloy in order to increase the yield strengths. The quarternary alloy shows compressive yield strengths of 976 MPa and 403 MPa at room temperature and 760°C, respectively, indicating that the Ti addition is having the desired effect.Comparison of the microstructures of the two alloys after room temperature compression (Figures la and lb) shows that the Ti containing alloy has a smaller grain size. X-ray diffraction data indicate that the gamma prime volume fraction increases from 10% to 20% as the result of the Ti addition. Titanium was also found to stabilize the B2 matrix (marked A in Figure lb) as no tetragonal L10 phase was found. All precipitates along grain boundaries were identified by micro-diffraction to be gamma prime.


Metals ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 1201 ◽  
Author(s):  
Liu ◽  
Zhang ◽  
Nan ◽  
Feng ◽  
Ding

Two high Nb-containing TiAl alloys, Ti46.6Al7.5Nb0.5Si0.2B (Alloy A) and Ti46.1Al7.4Nb5C0.5Si0.2B (Alloy B), were prepared by graphite mold casting. As-cast microstructures of the two alloys were characterized to clarify the effect of carbon addition. The results show that 5 at.% carbon addition can change the primary solidification phase from β phase to α phase. The as-cast microstructure of Alloy A consists of a fully α2 + γ lamellar structure and interdendritic eutectic silicide with a volume fraction of 2.3%. However, in Alloy B, the lamellar structure only forms in the dendritic stem and the massive γ is observed in the interdendritic regions. Two types of carbides, Ti2AlC and TiC, are produced in Alloy B. A large number of randomly distributed primary Ti2AlC particles with volume fraction of 14.9% are observed in both the dendritic and interdendritic regions. Irregularly shaped TiC remains inside of the large Ti2AlC particle, suggesting TiC carbides transformed to Ti2AlC during cooling. The addition of carbon also changes the morphology of the silicides from a eutectic structure to a blocky structure in the massive γ matrix or at the interface of the Ti2AlC and the γ matrix. High level of niobium greatly increases the solid solution limit of carbon, since C content in the matrix is much higher than the solid solubility of that in the TiAl binary system. The hardness of the matrix increases from 325 HV to 917 HV caused by the addition of carbon.


2001 ◽  
Vol 7 (S2) ◽  
pp. 386-387
Author(s):  
Pratibha L. Gai

Silica and titania based ceramics and their analogs are some of the most fundamental in crystal chemistry and ceramic science Our interests include applications of nanostructures and chemical composites of the ceramics in nanoelectronics, chemical processes and as scaffolds in biotechnologies. Finely divided titania is used in a vast array of products including paper, paint, food and clothing. Novel microscopy methods including dynamic environmental-high resolution transmission EM (EHREM) at the atomic level, FESEM and cathodoluminescence are leading to striking progress in the development of the ceramic nanotechnologies.Phase transformations in the cristobalite form of silica, from the tetragonal a phase (low or room temperature form) to the cubic β phase (high temperature, (270°C) form) result in discontinuous thermal expansion and are not conducive to nanotechnology. Here we report fundamental in situatomic resolution studies of the phase transformations using EHREM and have used the results to design a number of stable, single-phase structures at room temperature (RT).


2009 ◽  
Vol 24 (1) ◽  
pp. 24-31 ◽  
Author(s):  
Y.Q. Liu ◽  
H.T. Cong ◽  
H.M. Cheng

To explore potential applications of nanocomposites for microelectronic packaging, the thermal properties were investigated on newly developed nanocrystalline Al composites reinforced by AlN nanoparticles. It was found that the thermal conductivity (TC) is reduced with increasing AlN volume fraction (Vp), since connectivity of Al matrix is decreased by introduction of the nanoparticles. Although AlN nanoparticles introduce thermal resistance, they still have significant contribution to the TC of the composite as high-TC inclusion. Particularly, a percolation behavior of AlN nanoparticles is thought to occur with the threshold at 23–30%. Measurements at elevated temperatures (∼500 °C) show almost no distinct degradation of TC relative to room temperature. Moreover, the coefficient of thermal expansion (CTE) is remarkably lowered as Vp increases, e.g., from 26 × 10−6 to 13.9 × 10−6 K−1, by raising Vp to 39%. Therefore, the nanocomposites may be applicable as electronic packaging material, due to the combination of acceptable TC and low CTE.


1992 ◽  
Vol 273 ◽  
Author(s):  
A. Misra ◽  
R. D. Noebe ◽  
R. Gibala

ABSTRACTDuctile phase reinforcement is an attractive approach for improving room temperature ductility and toughness of intermetallics. Two alloys of nominal composition (at.%) Ni70Al30 and Ni50Fe30Al20 were directionally solidified to produce quasi-lamellar microstructures. Both alloys exhibit ∼10% tensile ductility at 300 K when the ductile phase is continuous, while the Ni70Al30 alloy has a tensile ductility of ∼4% when the γ′ phase is discontinuous. Observations of slip traces and dislocation substructures indicate that a substantial portion of the ductility enhancement is a result of slip transfer from the ductile phase to the brittle matrix. The details of slip transfer in the two model materials and the effect of the volume fraction and morphology of the ductile phase on the ductility enhancement in the composite are discussed.


Sign in / Sign up

Export Citation Format

Share Document