The effect of annealing environments on the epitaxial recrystallization of ion-beam-amorphized SrTiO3

1992 ◽  
Vol 7 (3) ◽  
pp. 717-724 ◽  
Author(s):  
J. Rankin ◽  
J.C. McCallum ◽  
L.A. Boatner

Time-resolved reflectivity and Rutherford backscattering spectroscopy were used to investigate the effects of regrowth environments on the thermally induced solid phase epitaxial (SPE) regrowth of amorphous near-surface layers produced by ion implantation of single-crystal SrTiO3. Water vapor in the regrowth atmosphere was found to alter both the apparent rate and activation energy of the SPE regrowth. For relatively dry atmospheres, a single constant regrowth rate is observed at any given temperature, and the activation energy is 1.2 ± 0.1 eV. When the concentration of H2O vapor in the atmosphere is increased, however, the regrowth activation energy effectively decreases to ∼0.95 eV. When regrown in atmospheres containing H2O vapor, the SrTiO3 amorphous layer exhibits two distinct stages of SPE regrowth as compared to the single rate found for dry anneals. This two-stage process apparently results from the diffusion of H/OH from the regrowth atmosphere at the surface of the crystal through the amorphous layer to the regrowing crystalline/amorphous interface.

1994 ◽  
Vol 339 ◽  
Author(s):  
V. Heera ◽  
R. Kögler ◽  
W. Skorupa ◽  
J. Stoemenos

ABSTRACTThe evolution of the damage in the near surface region of single crystalline 6H-SiC generated by 200 keV Ge+ ion implantation at room temperature (RT) was investigated by Rutherford backscattering spectroscopy/chanelling (RBS/C). The threshold dose for amorphization was found to be about 3 · 1014 cm-2, Amorphous surface layers produced with Ge+ ion doses above the threshold were partly annealed by 300 keV Si+ ion beam induced epitaxial crystallization (IBIEC) at a relatively low temperature of 480°C For comparison, temperatures of at least 1450°C are necessary to recrystallize amorphous SiC layers without assisting ion irradiation. The structure and quality of both the amorphous and recrystallized layers were characterized by cross-section transmission electron microscopy (XTEM). Density changes of SiC due to amorphization were measured by step height measurements.


2020 ◽  
Vol 10 ◽  
pp. 5-18
Author(s):  
S. А. Ghyngаzоv ◽  
◽  
V. А. Коstеnко ◽  
A. K. Khassenov ◽  
◽  
...  

The article considers the influence of the treatment modes by N2+ and Ar+ ions beams on the physical and mechanical properties of zirconia ceramics. Surface modification of zirconia ceramics was performed using two modes of ion treatment — pulsed and continuous. The pulse mode of treatment by N2+ ions was realized at an accelerating voltage of 250 – 300 kV, current density j = 150 – 200 A/cm2, and energy density W = (3.5 and 5) ± 5 % J/cm2. The continuous mode of treatment by Ar+ ions was realized at an accelerating voltage of 30 kV and an ion current density of 300 and 500 μA/cm2. The fluence of the Ar+ ion beam varied from 1016 to 1018 cm–2. It is established that the pulsed mode of ion treatment leads to the melting and recrystallization of the surface of ceramics. It is shown that this treatment leads to a violation of the oxygen stoichiometry in ceramics and, as a result, there is an appearance of electrical conductivity in the near-surface layers, the layers of zirconia ceramics become conductive. It was established that the continuous mode of ion treatment does not lead to the melting and recrystallization of the ceramics surface, but is accompanied by its slight etching. It is shown that under the action of continuous ion treatment, microhardness increases (by 14 %). Hardening of the surface layers of ceramics is observed at a depth that exceeds the average projected range of Ar+ ion by 103 times.


2018 ◽  
Vol 781 ◽  
pp. 70-75
Author(s):  
Sergei Ghyngazov ◽  
Valeria Kostenko ◽  
Sergey Shevelev ◽  
Anatoliy I. Kupchishin ◽  
Aleksey Kondratyuk

The effect of ion irradiation on the strength characteristics of magnesium oxide and ceramics based on zirconia is studied. The MgO samples were a single crystal grown in an artificial manner. Samples of zirconium ceramics were prepared by ceramic technology. Irradiation of MgO crystals was carried out by Si+ ions (E = 150 keV), Fe+ (E = 70 keV), C+ (E = 50 keV) at room temperature. The fluence varied within the range (1016–1017) сm–2. The modification of the investigated types of ceramics was carried out by ions Al+ (Е = 60 keV), Ar+ (Е= 60 keV), N+ (E = 50 keV). We used ion beams of microsecond duration and moderate power (the current density in the pulse was 3 10-3 A/cm2). Fluence was 1017 cm-2. The irradiation of the ceramics with an ion beam C+ (E = 50 keV) was also performed with nanosecond duration (τ = 50 ns). It is established that ionic irradiation of magnesium oxide leads to an increase in crack resistance and a critical stress intensity factor. Irradiation of ceramics leads to hardening of its near-surface layers.


1986 ◽  
Vol 77 ◽  
Author(s):  
Ping Mei ◽  
H. W. Yoon ◽  
T. Venkatesan ◽  
S. A. Schwarz ◽  
J. P. Harbison

ABSTRACTThe intermixing of AlAs/GaAs superlattices has been investigated as a function of Si concentration following anneals in the range of 500 to 900 C. The superlattice samples were grown by molecular beam epitaxy(MBE) and the near surface layers were doped with silicon at concentrations of 2×10 to 5×1018 cm-3. Si and Al depth profiles were measured with secondary ion mass spectrometry (SIMS).The diffusion length and activation energy of Al as a function of silicon dopant concentration are derived from the SIMS data. In the temperature range studied an activation energy for the Al interdiffusion of -4eV is observed with the diffusion coefficients increasing rapidly with Si concentration.


1985 ◽  
Vol 51 ◽  
Author(s):  
J.S. Williams

ABSTRACTThis review examines recently observed phenomena associated with amorphisation and crystallisation of silicon under ion bombardment and furnace annealing. Ideally, heavy ion damage should completely amorphise the silicon surface layers so that the underlying crystal can provide a perfect template for subsequent epitaxial growth. However, in practise the ion bombardment and annealing behaviour can be decidedly more complex. During ion bombardment of silicon, several correlated processes can take place depending on the target temperature and the precise bombardment conditions. These processes include: defect production; amorphisation; diffusion and segregation of defects and impurities; and ion-beam-induced (epitaxial) crystallisation. During subsequent heat treatment, amorphous layers can exhibit anomalous impurity diffusion and precipitation effects, nucleation of random crystallites, and solid phase epitaxial growth. In addition, the kinetics of the epitaxial growth process are sensitive to the type and state of implanted impurities present in the silicon. The competition between random nucleation and epitaxy is also dominated by impurity effects. Finally, correlations between all of these phenomena provide i) considerable insight into impurity and defect behaviour in amorphous and crystalline silicon, and ii) a better understanding of the amorphous to crystalline phase transition, including mechanisms of solid phase epitaxial growth.


2013 ◽  
Vol 4 (5) ◽  
pp. 457-463 ◽  
Author(s):  
S. G. Psakh’e ◽  
A. I. Lotkov ◽  
S. N. Meisner ◽  
L. L. Meisner ◽  
V. P. Sergeev ◽  
...  

1986 ◽  
Vol 74 ◽  
Author(s):  
J. Linnros ◽  
R. G. Elliman ◽  
W. L. Brown

AbstractThe transition from ion induced epitaxial crystallization to planar amorphization of a preexisting amorphous layer in silicon has been investigated. The conditions for dynamic equilibrium at the transition were determined for different ion species as a function of dose rate and temperature. The critical dose rate for equilibrium varies exponentially with 1/T, exhibiting an activation energy of ∼1.2 eV. Furthermore, for different ions, the critical dose rate is inversely proportional to the square of the linear displacement density created by individual ions. This second order defect production process and the activation energy, which is characteristic of divacancy dissociation, suggest that the accumulation of divacancies at the amorphous/crystalline interface controls the balance between crystallization and amorphization.


2007 ◽  
Vol 363-365 ◽  
pp. 949-954 ◽  
Author(s):  
K. Sugiyama ◽  
T. Hayashi ◽  
K. Krieger ◽  
M. Mayer ◽  
K. Masaki ◽  
...  

1990 ◽  
Vol 202 ◽  
Author(s):  
D. C. Paine ◽  
D. J. Howard ◽  
N. D. Evans ◽  
D. W. Greve ◽  
M. Racanelli ◽  
...  

ABSTRACTIn this paper we report on the epitaxial growth of strained thin film Si1-xGex on Si by solid phase epitaxy. For these solid phase epitaxy experiments, a 180-nm-thick strained-layer of Si1-xGex with xGe=11.6 at. % was epitaxially grown on <001> Si using chemical vapor deposition. The near surface region of the substrate, including the entire Si1-xGex film, was then amorphized to a depth of 380 nm using a two step process of 100 keV, followed by 200 keV, 29Si ion implantation. The epitaxial regrowth of the alloy was studied with in situ TEM heating techniques which enabled an evaluation of the activation energy for strained solid phase epitaxial regrowth. We report that the activation energy for Si1-xGex (x=l 1.6 at. %) strained-layer regrowth is 3.2 eV while that for unstrained regrowth of pure Si is 2.68 eV and that regrowth in the alloy is slower than in pure Si over the temperature range 490 to 600°C.


1989 ◽  
Vol 157 ◽  
Author(s):  
J. S. Custer ◽  
Michael O. Thompson ◽  
D. C. Jacobson ◽  
J. M. Poate

ABSTRACTThe interface velocity of Au and Ag doped amorphous Si during ion beam induced epitaxy was measured using in situ time resolved reflectivity. Interfacial segregation coefficients were determined as a function of composition from numerical simulations. At 320°C Au impurities enhanced the velocity by up to a factor of 2.5 compared to the intrinsic case. Silver slightly retarded re-growth by 10 %. These effects are qualitatively similar to the case of thermal solid phase epitaxy. Using the measured impurity profiles and interface velocity, computer simulations relate the segregation coefficient to the concentrations of the impurity at the interface. In both cases, the segregation coefficient increases with increasing interfacial impurity concentration.


Sign in / Sign up

Export Citation Format

Share Document