Factors influencing the formation of hollow ceramic microspheres by water extraction of colloidal droplets

1995 ◽  
Vol 10 (1) ◽  
pp. 84-94 ◽  
Author(s):  
Jay G. Liu ◽  
David L. Wilcox

Hollow ceramic microspheres of Al2O3, SiO2, and mullite have been prepared by the combination of an emulsion technique with a water extraction sol-gel method. Concentration of sol, initial droplet size, and water extraction rate of the system are found to be the important process parameters controlling the size and wall thickness of the hollow microspheres, and their influences are shown. A model that correlates the morphology of microspheres to concentration and water extraction rate is proposed and is in good agreement with the experimental observations. The capability and limitation of this process for forming hollow microspheres are demonstrated. It was shown that hollow microspheres with sizes greater than 5 μm could be readily prepared, while a limitation was met for sizes less than 1 μm, in which case solid microspheres were normally formed.

2003 ◽  
Vol 771 ◽  
Author(s):  
Amir Fardad ◽  
Wei Liang ◽  
Yadong Zhang ◽  
Bryson Case ◽  
Shibin Jiang ◽  
...  

AbstractFluorinated and photo-imageable precursors are synthesized through a Barbier-Grignard reaction for 1550-nm window. The precursors are used for the sol-gel process of integrated optic components for silica-on-silicon technology. Material compositions and process parameters are optimized to achieve internal absorptions >0.1 dB/cm and propagation losses of about 0.5 dB/cm at 1550 nm. Compact 1×16 Beam splitters are designed and fabricated which exhibit >0.3 dB power uniformity, >0.1 dB PDL and 1.5 dB coupling loss. By hybrid integration of the passive splitters and in-house fiber amplifiers, amplifying splitters are demonstrated at various signal intensities.


2020 ◽  
Vol 183 ◽  
pp. 05002 ◽  
Author(s):  
Hamza Belkhanchi ◽  
Younes Ziat ◽  
Maryama Hammi ◽  
Charaf Laghlimi ◽  
Abdelaziz Moutcine ◽  
...  

In this study, we have investigated the surface analysis and optoelectronic properties on the synthesis of N-CNT/TiO2 composites thin films, using sol gel method for a dye synthetized solar cell (DSSC) which is found to be simple and economical route. The titanium dioxide based solar cells are an exciting photovoltaic candidate; they are promising for the realization of large area devices. That can be synthetized by room temperature solution processing, with high photoactive performance. In the present work, we stated comparable efficiencies by directing our investigation on obtaining Sol Gel thin films based on N-CNT/TiO2, by dispersing nitrogen (N) doped carbon nanotubes (N-CNTs) powders in titanium tetraisopropoxyde (TTIP). The samples were assessed in terms of optical properties, using UV—visible absorption spectroscopic techniques. After careful analysis of the results, we have concluded that the mentioned route is good and more efficient in terms of optoelectronic properties. The gap of “the neat” 0.00w% N-CNT/TiO2 is of 3eV, which is in a good agreement with similar gap of semiconductors. The incorporated “w%NCNTs” led to diminishing the Eg with increasing N-CNTs amount. These consequences are very encouraging for optoelectronic field.


2006 ◽  
Vol 317-318 ◽  
pp. 135-138 ◽  
Author(s):  
Wilfried Wunderlich ◽  
Krupathi Vishista ◽  
Francis D. Gnanam ◽  
Daniel Doni Jayaseelan

The aim of this research is, to clarify which route the sol-gel-process is taking in the case of a Al-Mg-spinel slurry, in particular, whether the hydrolysis reaction or the spinel formation is faster and which of the intermediate hydroxide phases Al(OH)3, and Mg(OH)2, or MgO and Al2O3 or MgAl2O4H2O are formed during the spinel formation. The spinel-alloy was produced using the polymeric route during wet chemical processing. Aluminium-isopropoxide was hydrolyzed in order to form the boehmite-sol and then the same amount of magnesia was added and mixed. This sol precipitated as boehmite (AlOOH) and brucite (Mg(OH)2) after ageing for 12h as confirmed by differential thermal analysis (DTA), and differential thermal gravity (DTG) measurements. After that, the powders were subsequently annealed at 900oC for 3h in air and observed by TEM. Calculations using thermodynamic enthalpy data are in good agreement with the experiments and can be used to predict reaction paths in other system as well.


2021 ◽  
Vol 1038 ◽  
pp. 468-479
Author(s):  
Olga Skorodumova ◽  
Olena Tarakhno ◽  
Olena Chebotaryova ◽  
Oleg Bezuglov ◽  
Fatih Mehmet Emen

Based on the generalization of research results on the processes of obtaining SiO2 sols using tetraethoxysilane and ethyl silicates, the main factors influencing the elasticity of silica coatings on cotton fabrics and their fire-retardant properties are considered. The possibility of forming covalent bonds between the functional groups of cellulose, gel coating and flame retardant layer is considered, which explains the strong fixation of a thin layer of coating on the fibers of the fabric and improve its fire protection. The use of the developed compositions for fire-retardant elastic coatings based on ethyl silicate allows to increase the time of complete burning of cotton from 30s (untreated fabric) to 600s (treated with binary coating).


2018 ◽  
Vol 56 (1A) ◽  
pp. 197
Author(s):  
Nguyen Hoang Tuan

In this study, we present some results on the structure and properties of the solid solution of Bi0.5K0.5TiO3– BiFeCoO3 (BKT – BFCO) by Sol-gel method. Crystal structures of BKT – BFCO solid solutions were studies by XRD and Raman spectroscopy. The results were in good agreement with the previous reports of Bi0.5K0.5TiO3– BiFeO3 (BKT – BFO) and Bi0.5K0.5TiO3 – BiCoO3 (BKT – BCO) solid solutions. The magnetic properties were investigated via unsaturated M-H loop, which showed the competition of paramagnetic and antiferromagnetic ordering in BKT – BFCO. However, differing from the BKT – BFO and BKT – BCO solid solutions, the unclear values of saturated magnetism in BKT – BFCO raised the unexplained question, which needed further studies.


2015 ◽  
Vol 44 (2) ◽  
pp. 132-136
Author(s):  
Subrata Saha ◽  
Naureen Binte Shahjahan ◽  
Naseem Ahmed

Electrode wire diameter, welding current, electrode wire feed rate, arc length are influential processparameters for hardness, depth of heat affected zone and microstructure of weldment in case of MIG weldingprocess. In this work, the effect of these process parameters on weldment characteristics had been studied.Experiments were conducted using bead-on surface of medium carbon steel plate in a semi-automatic MIGwelding machine. Hardness, depth of heat affected zone and microstructure of weldment were examined. Anartificial neural network (ANN) based modeling of the experiments had been successfully done to realize thepatterns of results obtained from the experiments. It had been observed that the microstructures obtained inthese weldments were distinctly different from that of the base metal. Microstructures, hardness and depth ofheat affected zone of weldment depends on the process parameters. ANN model shows good agreement with theexperimental results in case of hardness and depth of heat affected zone of weldment.


2019 ◽  
Vol 21 (12) ◽  
pp. 6467-6476 ◽  
Author(s):  
Jörg Baz ◽  
Christoph Held ◽  
Jürgen Pleiss ◽  
Niels Hansen

Water activity and shear viscosity of water–glyceline mixtures are important process parameters that can be effectively calculated using molecular modelling.


Sign in / Sign up

Export Citation Format

Share Document