Synthesis of a bulk amorphous alloy by consolidation of the melt-spun amorphous ribbons under high pressure

1998 ◽  
Vol 13 (3) ◽  
pp. 784-788 ◽  
Author(s):  
F. Zhou ◽  
X. H. Zhang ◽  
K. Lu

Based on the experimental observation that high pressure will considerably enhance the crystallization onset temperature of amorphous alloys, an attempt was made to consolidate the melt-spun amorphous ribbons into fully densed three-dimensional bulk amorphous materials under high pressures. An amorphous Ni69Cr7Fe2.5Si8B13.5 (at. %) alloy was used as a model material. Under a pressure of 1.5 GPa, the crystallization onset temperature was found to be increased by about 40 K, resulting in a widened supercooled liquid temperature region (about 68 K) beneath the onset of crystallization. The high pressure consolidation of the amorphous ribbons in this temperature region yielded bulk amorphous compacts with the same density of the melt-spun ribbons. This achievement was attributed to the significant homogeneous viscous flow of materials in the supercooled liquid state that could be maintained at higher temperatures during the high pressure compaction.

2000 ◽  
Vol 650 ◽  
Author(s):  
Lance L. Snead ◽  
Martin Balden

ABSTRACTDensification and crystallization kinetics of bulk SiC amorphized by neutron irradiation is studied. The temperature of crystallization onset of this highly pure, fully amorphous bulk SiC was found to be between 875-885°C and crystallization is nearly complete by 950°C. In-situ TEM imaging confirms the onset of crystallization, though thin-film effects apparently alter the kinetics of crystallization above this temperature. It requires >1125°C for complete crystallization of the TEM foil. Annealing at temperatures between the irradiation and crystallization onset temperature is seen to cause significant densification attributed to a relaxation, or reordering, of the as-amorphized structure.


MRS Advances ◽  
2018 ◽  
Vol 3 (41) ◽  
pp. 2467-2478
Author(s):  
Solomon F. Duki ◽  
Mesfin Tsige

ABSTRACTMotivated by an experimental finding on the density of supercooled water at high pressure [O. Mishima, J. Chem. Phys. 133, 144503 (2010)] we performed atomistic molecular dynamics simulations study of bulk water in the isothermal-isobaric ensemble. Cooling and heating cycles at different isobars and isothermal compression at different temperatures are performed on the water sample with pressures that range from 0 to 1.0 GPa. The cooling simulations are done at temperatures that range from 40 K to 380 K using two different cooling rates, 10 K/ns and 10 K/5 ns. For the heating simulations we used the slowest heating rate (10 K/5 ns) by applying the same range of isobars. Our analysis of the variation of the volume of the bulk water sample with temperature at different pressures from both isobaric cooling/heating and isothermal compression cycles indicates a concave-downward curvature at high pressures that is consistent with the experiment for emulsified water. In particular, a strong concave down curvature is observed between the temperatures 180 K and 220 K. Below the glass transition temperature, which is around 180 K at 1GPa, the volume turns to concave upward curvature. No crystallization of the supercooled liquid state was observed below 180 K even after running the system for an additional microsecond.


2020 ◽  
Vol 11 (3-2020) ◽  
pp. 156-162
Author(s):  
K. A. Svyrydova ◽  
◽  
V. V. Burkovetskii ◽  
T. V. Tsvetkov ◽  
V. I. Parfeniy ◽  
...  

The results of the structural studies and hardness measurements of bi-and three-layer samples obtained by high pressure torsion of melt-spun ribbons of Al-based alloys with amorphous and crystalline structures have been presented. It has been established that straining of amorphous ribbons results in formation of nanocomposite structure while that refinement of crystalline structure and increase of microstrains takes place in crystalline ribbon. It has been found that the hardness of the consolidated samples increases with the increase of the deformation level up to 4,7 GPa.


Metals ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 727 ◽  
Author(s):  
Jianbin Li ◽  
Ming Lu ◽  
Yongbao Ai ◽  
Cong Tao ◽  
Yun Xiong

A Fe61Cr2Nb3Si12B22 amorphous alloy rod sample of 8.8 mm diameter has been successfully prepared through explosive consolidation. The structure and thermal stability of the as-synthesized sample have been analyzed through X-ray diffraction (XRD) and differential scanning calorimeter (DSC) analysis. The results demonstrate that the sample still retains an amorphous structure, and the glass transition temperature (Tg), the crystallization onset temperature (Tx), the supercooled liquid zone (ΔTx) (Tx − Tg) and the reduced glass transition temperatures (Trg) (Tg/Tm) are 784 K, 812 K, 28 K, and 0.556, respectively. Its microstructure has been investigated by optical microscopy (OM) and scanning electron microscopy (SEM). The average microhardness of the alumina compact is about 1069 HV.


2019 ◽  
Vol 60 (11) ◽  
pp. 143-150
Author(s):  
Vladimir I. Zhuchkov ◽  
◽  
Oleg V. Zayakin ◽  
Lyudmila Yu. Mikhailova ◽  
◽  
...  

The Russian Federation has a sufficient number of promising deposits of niobium raw materials which can satisfy the niobium and tantalum demands of Russian metallurgical enterprises for many decades. Ferroalloy technologists are faced with the difficult tasks of developing from various types of ore raw materials not only effective processes for its processing but also new acceptable rational compositions of niobium-containing ferroalloys. The chemical composition of niobium ferroalloy should, on the one hand, correspond to the product obtained by benefication (concentrate) and, on the other hand, satisfy the requirements of steelmakers for ferroalloys intended for microalloying niobium steel. To develop rational compositions of new niobium-containing ferroalloys in this work the physicochemical characteristics (which include crystallization temperature and density) of alloys containing 10-50% Nb, 10-40% Si, and 5-30% Al were studied. Two-component Fe-Nb metal alloys have a rational crystallization onset temperature (<1400 °С) only when the niobium content is not more than 10%. To achieve rational crystallization onset temperatures it is necessary to use complex alloys with silicon and aluminum. Studies have shown that a decrease in the crystallization onset temperature of complex niobium alloys occurs when the niobium content decreases with an increase in the concentration of silicon or aluminum. Three-component alloys Fe-Si-Nb and Fe-Al-Nb with a content of 15-20% Nb, 32-40 Si% or 12-30% Al belong to the category of low-melting ferroalloys. To achieve rational density values light metals such as silicon or aluminum must be introduced into a two-component system. The studied three-component alloys with a content of 25-40% Si or 15-30% Al have rational density values both from the point of view of their production and application to the processing of steel melt. The best physicochemical characteristics providing high service properties are possessed by complex niobium (15-20% Nb) FeNbSi alloys with 32-40% Si and FeNbAl with 15-30% Al which are recommended for widespread use in ladle microalloying of steels.


2021 ◽  
Vol 23 (7) ◽  
pp. 4277-4286
Author(s):  
S. V. Chuvikov ◽  
E. A. Berdonosova ◽  
A. Krautsou ◽  
J. V. Kostina ◽  
V. V. Minin ◽  
...  

Pt-Catalyst plays a key role in hydrogen adsorption by Cu-BTC at high pressures.


Author(s):  
Kun Li ◽  
Junjie Wang ◽  
Vladislav A. Blatov ◽  
Yutong Gong ◽  
Naoto Umezawa ◽  
...  

AbstractAlthough tin monoxide (SnO) is an interesting compound due to its p-type conductivity, a widespread application of SnO has been limited by its narrow band gap of 0.7 eV. In this work, we theoretically investigate the structural and electronic properties of several SnO phases under high pressures through employing van der Waals (vdW) functionals. Our calculations reveal that a metastable SnO (β-SnO), which possesses space group P21/c and a wide band gap of 1.9 eV, is more stable than α-SnO at pressures higher than 80 GPa. Moreover, a stable (space group P2/c) and a metastable (space group Pnma) phases of SnO appear at pressures higher than 120 GPa. Energy and topological analyses show that P2/c-SnO has a high possibility to directly transform to β-SnO at around 120 GPa. Our work also reveals that β-SnO is a necessary intermediate state between high-pressure phase Pnma-SnO and low-pressure phase α-SnO for the phase transition path Pnma-SnO →β-SnO → α-SnO. Two phase transition analyses indicate that there is a high possibility to synthesize β-SnO under high-pressure conditions and have it remain stable under normal pressure. Finally, our study reveals that the conductive property of β-SnO can be engineered in a low-pressure range (0–9 GPa) through a semiconductor-to-metal transition, while maintaining transparency in the visible light range.


2020 ◽  
Author(s):  
Kenji Ohta ◽  
Kei Hirose

Abstract Precise determinations of the thermal conductivity of iron alloys at high pressures and temperatures are essential for understanding the thermal history and dynamics of the metallic cores of the Earth. We review relevant high-pressure experiments using a diamond-anvil cell and discuss implications of high core conductivity for its thermal and compositional evolution.


SPE Journal ◽  
2019 ◽  
Vol 24 (06) ◽  
pp. 2504-2525 ◽  
Author(s):  
Jing Li ◽  
Keliu Wu ◽  
Zhangxin Chen ◽  
Kun Wang ◽  
Jia Luo ◽  
...  

Summary An excess adsorption amount obtained in experiments is always determined by mass balance with a void volume measured by helium (He) –expansion tests. However, He, with a small kinetic diameter, can penetrate into narrow pores in porous media that are inaccessible to adsorbate gases [e.g., methane (CH4)]. Thus, the actual accessible volume for a specific adsorbate is always overestimated by an He–based void volume; such overestimation directly leads to errors in the determination of excess isotherms in the laboratory, such as “negative isotherms” for gas adsorption at high pressures, which further affects an accurate description of total gas in place (GIP) for shale–gas reservoirs. In this work, the mass balance for determining the adsorbed amount is rewritten, and two particular concepts, an “apparent excess adsorption” and an “actual excess adsorption,” are considered. Apparent adsorption is directly determined by an He–based volume, corresponding to the traditional treatment in experimental conditions, whereas actual adsorption is determined by an adsorbate–accessible volume, where pore–wall potential is always nonpositive (i.e., an attractive molecule/pore–wall interaction). Results show the following: The apparent excess isotherm determined by the He–based volume gradually becomes negative at high pressures, but the actual one determined by the adsorbate–accessible volume always remains positive.The negative adsorption phenomenon in the apparent excess isotherm is a result of the overestimation in the adsorbate–accessible volume, and a larger overestimation leads to an earlier appearance of this negative adsorption.The positive amount in the actual excess isotherm indicates that the adsorbed phase is always denser than the bulk gas because of the molecule/pore–wall attraction aiding the compression of the adsorbed molecules. Practically, an overestimation in pore volume (PV) is only 3.74% for our studied sample, but it leads to an underestimation reaching up to 22.1% in the actual excess amount at geologic conditions (i.e., approximately 47 MPa and approximately 384 K). Such an overestimation in PV also underestimates the proportions of the adsorbed–gas amount to the free–gas amount and to the total GIP. Therefore, our present work underlines the importance of a void volume in the determination of adsorption isotherms; moreover, we establish a path for a more–accurate evaluation of gas storage in geologic shale reservoirs with high pressure.


During the researches upon high-pressure explosions of carbonic oxide-air, hydrogen-air, etc., mixtures, which have been described in the previous papers of this series, a mass of data has been accumulated relating to the influence of density and temperature upon the internal energy of gases and the dissociation of steam and carbon dioxide. Some time ago, at Prof. Bone’s request, the author undertook a systematic survey of the data in question, and the present paper summarises some of the principal results thereof, which it is hoped will throw light upon problems interesting alike to chemists, physicists and internal-combustion engineers. The explosion method affords the only means known at present of determining the internal energies of gases at very high temperatures, and it has been used for this purpose for upwards of 50 years. Although by no means without difficulties, arising from uncertainties of some of the assumptions upon which it is based, yet, for want of a better, its results have been generally accepted as being at least provisionally valuable. Amongst the more recent investigations which have attracted attention in this connection should be mentioned those of Pier, Bjerrum, Siegel and Fenning, all of whom worked at low or medium pressures.


Sign in / Sign up

Export Citation Format

Share Document