Phase transformation in ball-milled iron-rich Sm–Fe(–C) powders

1999 ◽  
Vol 14 (3) ◽  
pp. 750-762 ◽  
Author(s):  
O. Mao ◽  
Z. Altounian ◽  
J. O. Ström-Olsen ◽  
Jun Yang

Two intermetallic phases, R2Fe17 carbide and R2Fe14C, which are promising candidates for permanent magnets, are formed in the iron-rich R–Fe–C ternary alloy system (R = rare earths). Using x-ray diffraction and thermomagnetometry the phase formation, transformation, and thermodynamic relations between the two structures, prepared by high energy ball milling, are studied quantitatively for R = Sm. The results lead to a free energy diagram for the pseudobinary system of Sm2Fe17 and C. A maximum equilibrium carbon content, xc, has been established for the carbide Sm2Fe17Cx and its temperature dependence determined. Beyond the equilibrium concentration, Sm2Fe17Cx transforms into a mixture of Sm2Fe17Cxc, Sm2Fe14C, and α–Fe. Although not thermodynamically stable, Sm2Fe17Cx can still be formed through nonequilibrium processes by being kinetically favored over the stable phase(s). This feature is important for the production of Sm–Fe–C-based permanent magnets.

2012 ◽  
Vol 730-732 ◽  
pp. 739-744 ◽  
Author(s):  
Petr Urban ◽  
Francisco Gomez Cuevas ◽  
Juan M. Montes ◽  
Jesus Cintas

The amorphization process by mechanical alloying in the Fe-Si alloy system has been studied. High energy ball milling has been applied for alloys synthesis. X-ray diffraction (XRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to monitor the structural and phase transformations through the different stages of milling. The addition of amorphous boron in the milling process and the increase of the milling time were used to improve the formation of the amorphous phase. Heating the samples resulted in the crystallization of the synthesized amorphous alloys and the appearance of equilibrium intermetallic compounds.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2332
Author(s):  
Ahmad Mamoun Khamis ◽  
Zulkifly Abbas ◽  
Raba’ah Syahidah Azis ◽  
Ebenezer Ekow Mensah ◽  
Ibrahim Abubakar Alhaji

The purpose of this study was to improve the dielectric, magnetic, and thermal properties of polytetrafluoroethylene (PTFE) composites using recycled Fe2O3 (rFe2O3) nanofiller. Hematite (Fe2O3) was recycled from mill scale waste and the particle size was reduced to 11.3 nm after 6 h of high-energy ball milling. Different compositions (5–25 wt %) of rFe2O3 nanoparticles were incorporated as a filler in the PTFE matrix through a hydraulic pressing and sintering method in order to fabricate rFe2O3–PTFE nanocomposites. The microstructure properties of rFe2O3 nanoparticles and the nanocomposites were characterized through X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and high-resolution transmission electron microscopy (HRTEM). The thermal expansion coefficients (CTEs) of the PTFE matrix and nanocomposites were determined using a dilatometer apparatus. The complex permittivity and permeability were measured using rectangular waveguide connected to vector network analyzer (VNA) in the frequency range 8.2–12.4 GHz. The CTE of PTFE matrix decreased from 65.28×10−6/°C to 39.84×10−6/°C when the filler loading increased to 25 wt %. The real (ε′) and imaginary (ε″) parts of permittivity increased with the rFe2O3 loading and reached maximum values of 3.1 and 0.23 at 8 GHz when the filler loading was increased from 5 to 25 wt %. A maximum complex permeability of 1.1−j0.07 was also achieved by 25 wt % nanocomposite at 10 GHz.


1998 ◽  
Vol 13 (5) ◽  
pp. 1171-1176 ◽  
Author(s):  
S-H. Yip ◽  
D. Guay ◽  
S. Jin ◽  
E. Ghali ◽  
A. Van Neste ◽  
...  

The structural and electrochemical properties of the Ti–Ru–Fe–O system have been studied over the whole ternary metal compositional range, keeping constant the oxygen content at 30 at.%. The phase diagram was explored systematically by varying the composition of the material along one of the following axes: (i) constant Ru content of 16 at. %; (ii) constant Ti/Ru ratio of 2; (iii) constant Ti/Fe ratio of 1.6. For O/Ti ratios equal or below unity, the most prominent peaks observed in the x-ray diffraction patterns belong to a B2 structure. For O/Ti ratio larger than unity, stable titanium oxide phases are formed, which coexist with a cubic Fe-like or hcp-Ru like phases depending on the Fe/Ru ratio. Powder compositions with stoichiometry close to Ti2RuFeO2 are of interest due to good electrocatalytic properties, long-term stability, and low Ru content.


Nanomaterials ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1308 ◽  
Author(s):  
Arnab Chakraborty ◽  
Răzvan Hirian ◽  
Gregor Kapun ◽  
Viorel Pop

Nanostructured alloy powders of SmCo5 + 10 wt% Fe obtained using recycled material were studied for the first time. The SmCo5 precursor was obtained from commercial magnets recycled by hydrogen decrepitation. The results were compared with identically processed samples obtained using virgin SmCo5 raw material. The samples were synthesized by dry high-energy ball-milling and subsequent heat treatment. Robust soft/hard exchange coupling was observed—with large coercivity, which is essential for commercial permanent magnets. The obtained energy products for the recycled material fall between 80% and 95% of those obtained when using virgin SmCo5, depending on milling and annealing times. These results further offer viability of recycling and sustainability in production. These powders and processes are therefore candidates for the next generation of specialized and nanostructured exchange-coupled bulk industrial magnets.


2017 ◽  
Vol 899 ◽  
pp. 19-24
Author(s):  
Lucas Moreira Ferreira ◽  
Stephania Capellari Rezende ◽  
Antonio Augusto Araújo Pinto da Silva ◽  
Gael Yves Poirier ◽  
Gilberto Carvalho Coelho ◽  
...  

The present work reports on the microstructure and oxidation resistance of Ni-25Nb, Ni-20Nb-5Ta and Ni-15Nb-10Ta alloys produced by high-energy ball milling and subsequent sintering. The sintered samples were characterized by optical microscopy, scanning electron microscopy, X-ray diffraction, energy dispersive spectrometry, and static oxidation tests. Homogeneous microstructures of the binary and ternary alloys indicated the major presence of the β-Ni3Nb compound as matrix, which dissolved large amounts of tantalum. Consequently, the β-Ni3Nb peaks moved toward the direction of smaller diffraction angles. Iron contamination lower than 6.7 at.-% was detected by EDS analysis, which were picked-up during the previous ball milling process. After the static oxidation tests (1100°C for 4 h) the sintered Ni-25Nb, Ni-20Nb-5Ta and Ni-15Nb-10Ta alloys presented mass gains of 31.5%, 30.5% and 28.8%, respectively. Despite the higher densification of the Ni-15Nb-10Ta alloy, the results suggested that the tantalum addition contributed to improve the oxidation resistance of the β-Ni3Nb compound.


2012 ◽  
Vol 05 ◽  
pp. 496-501 ◽  
Author(s):  
S. SHEIBANI ◽  
S. HESHMATI-MANESH ◽  
A. ATAIE

In this paper, the influence of toluene as the process control agent (PCA) and pre-milling on the extension of solid solubility of 7 wt.% Cr in Cu by mechanical alloying in a high energy ball mill was investigated. The structural evolution and microstructure were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques, respectively. The solid solution formation at different conditions was analyzed by copper lattice parameter change during the milling process. It was found that both the presence of PCA and pre-milling of Cr powder lead to faster dissolution of Cr . The mean crystallite size was also calculated and showed to be about 10 nm after 80 hours of milling.


2011 ◽  
Vol 121-126 ◽  
pp. 3401-3405 ◽  
Author(s):  
Ju Hua Luo

Lithium niobate powders were prepared by mechanochemical treatments using Li2CO3 and Nb2O5 as raw materials. Scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) were employed to evaluate the morphologies and structures of samples. The mechanism of LiNbO3 formation of the ground mixture samples was discussed. The crystal structure of mixture was collapsed into a disordered structure, which increased with increasing grinding time. At the same time, the specific surface area increase and the bond energy reduction of the mixture occurred. Consequently, high energy ball milling enables increase of the internal energy, reduction of the activation energy, and improvement of the uniform mixing stage, which resulted in direct formation of singal phase LiNbO3 at a low temperature (500°C). However, the temperature must reach 1200°C for the traditional method.


2020 ◽  
Vol 19 (04) ◽  
pp. 1950034
Author(s):  
V. Balachandar ◽  
J. Brijitta ◽  
K. Viswanathan ◽  
R. Sampathkumar

In this study, ZnO–Fe2O3 nanocomposites were prepared by high-energy ball milling technique and characterized through X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), UV–visible spectroscopy and dielectric spectroscopy. The amount of Fe2O3 in the ZnO–Fe2O3 nanocomposites was varied at the rates of 1[Formula: see text]wt.%, 3[Formula: see text]wt.% and 5[Formula: see text]wt.% in order to investigate its influence on the structural, optical and dielectric properties of the nanocomposites. XRD patterns of nanocomposites revealed no shift in peak positions and hence confirmed the formation of composites after ball milling. Further, it was observed from FESEM analysis that Fe2O3 particles were distributed randomly on the ZnO matrix of the nanocomposites. ZnO–Fe2O3 nanocomposites reveal extended optical absorption in the range of 400–600[Formula: see text]nm from UV studies. The dielectric constant and loss of the nanocomposites decrease exponentially with increase in frequency. The composition and frequency dependences of the dielectric constant, dielectric loss and AC conductivity are explained based on the Maxwell–Wagner effect and Koop’s theory.


2006 ◽  
Vol 168 (1-3) ◽  
pp. 1057-1063 ◽  
Author(s):  
Ligia E. Zamora ◽  
G. A. Perez Alcazar ◽  
J. M. Greneche ◽  
S. Suriñach

Sign in / Sign up

Export Citation Format

Share Document