Annealing-induced Changes in the Electronic and Structural Properties of ZnTe Substrates

2000 ◽  
Vol 15 (7) ◽  
pp. 1612-1616 ◽  
Author(s):  
J. A. Garcia ◽  
A. Remón ◽  
V. Munñz ◽  
R. Triboulet

The aim of this study is to demonstrate that the electronic and structural properties of II–VI substrates, here ZnTe, can be dramatically affected by thermal heating at temperatures in the range of those typically used in the epitaxial metalorganic chemical vapor deposition processes. Photoluminescence response shows that annealing at these temperatures produces a reduction of the sample crystalline quality, decreasing the free exciton emission relative to the deep level related one. Some factors, like the change in the charge and stress state of dislocations, Cu diffusion, and oxygen incorporation, could be responsible for changes in the substrate properties, which can produce stresses and contamination in the deposited sample.

Coatings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 215
Author(s):  
Andreia A. Ferreira ◽  
Francisco J. G. Silva ◽  
Arnaldo G. Pinto ◽  
Vitor F. C. Sousa

PVD (physical vapor deposition) and CVD (chemical vapor deposition) have gained greater significance in the last two decades with the mandatory shift from electrodeposition processes to clean deposition processes due to environmental, public safety, and health concerns. Due to the frequent use of coatings in several industrial sectors, the importance of studying the chromium coating processes through PVD–sputtering can be realized, investing in a real alternative to electroplated hexavalent chromium, usually denominated by chromium 6, regularly applied in electrodeposition processes of optical products in the automotive industry. At an early stage, experimental tests were carried out to understand which parameters are most suitable for obtaining chromium coatings with optical properties. To study the coating in a broad way, thickness and roughness analysis of the coatings obtained using SEM and AFM, adhesion analyzes with the scratch-test and transmittance by spectrophotometry were carried out. It was possible to determine that the roughness and transmittance decreased with the increase in the number of layers, the thickness of the coating increased linearly, and the adhesion and resistance to climatic tests remained positive throughout the study. Thus, this study allows for the understanding that thin multilayered Cr coatings can be applied successfully to polymeric substrates regarding optical applications in the automotive industry.


1997 ◽  
Vol 482 ◽  
Author(s):  
Z-Q. Fang ◽  
J. W. Hemsky ◽  
D. C. Look ◽  
M. P. Mack ◽  
R. J. Molnar ◽  
...  

AbstractA 1-MeV-electron-irradiation (EI) induced trap at Ec-0.18 eV is found in n-type GaN by deep level transient spectroscopy (DLTS) measurements on Schottky barrier diodes, fabricated on both metal-organic-chemical-vapor-deposition and hydride-vapor-phase-epitaxy material grown on sapphire. The 300-K carrier concentrations of the two materials are 2.3 × 1016 cm−3 and 1.3 × 1017 cm−3, respectively. Up to an irradiation dose of 1 × 1015 cm−2, the electron concentrations and pre-existing traps in the GaN layers are not significantly affected, while the EI-induced trap is produced at a rate of at least 0.2 cm−1. The DLTS peaks in the two materials are shifted slightly, possibly due to electric-field effects. Comparison with theory suggests that the defect is most likely associated with the N vacancy or Ga interstitial.


1995 ◽  
Vol 395 ◽  
Author(s):  
X. Zhang ◽  
P. Kung ◽  
D. Walker ◽  
A. Saxler ◽  
M. Razeghi

ABSTRACTWe report the growth and photoluminescence characterization of GaN grown on different substrates and under different growth conditions using metalorganic chemical vapor deposition. The deep-level yellow luminescence centered at around 2.2eV is attributed to native defect, most possibly the gallium vacancy. The yellow luminescence can be substantially reduced By growing GaN under Ga-rich condition or doping GaN with Ge or Mg.


1995 ◽  
Vol 51 (13) ◽  
pp. 8668-8671 ◽  
Author(s):  
David J. Singh ◽  
Warren E. Pickett

Sign in / Sign up

Export Citation Format

Share Document