Dependence of structural, electrical, and optical properties of ZnO:Al films on substrate temperature

2001 ◽  
Vol 16 (7) ◽  
pp. 2118-2123 ◽  
Author(s):  
M. Chen ◽  
Z. L. Pei ◽  
X. Wang ◽  
C. Sun ◽  
L. S. Wen

ZnO:Al (ZAO) films were deposited on fused silica substrates heated to 350 °C by dc magnetron reactive sputtering from a Zn target mixed with 1.5 wt% Al. Films deposited on a substrate heated to a temperature between room temperature and 300 °C were (001)-oriented crystals, but those grown at 350 °C consisted of crystallites with (001) and (101) orientations. The dependence of electrical properties such as resistivity, carrier concentration, and Hall mobility on temperature was measured. The results indicate that the carrier concentration and Hall mobility increase with increasing temperature up to 250 °C, though the Al content remains unchanged in this temperature range. The probable mechanisms are discussed. The minimum resistivity of ZAO films is 4.23 × 10−4 Ω cm, with a carrier concentration of 9.21 × 1020 cm−3 and a Hall mobility of 16.0 cm2 v−1 s−1. The films show a visible transmittance of above 80%.

2008 ◽  
Vol 368-372 ◽  
pp. 666-668 ◽  
Author(s):  
Min Ling Liu ◽  
Fu Qiang Huang ◽  
Li Dong Chen

A series of Cu1-xAlS2 (x = 0 ~ 0.08) bulk samples were synthesized by spark plasma sintering. The electrical and optical properties were investigated. P-type conductions for all samples were confirmed by both positive Seebeck coefficient and Hall coefficient. Bulk undoped CuAlS2 had a high conductivity of about 0.9 S/cm with a large band gap of 3.4 eV at room temperature. For vacancy-doped in Cu site, the carrier concentration was highly enhanced, reaching 1.7 × 1019 cm-3 for 8 mol% doped sample, and without decreasing the bang gap. The introduction of vacancies destroys the continuity of Cu-S network, which decreases the Hall mobility.


2007 ◽  
Vol 124-126 ◽  
pp. 1019-1022 ◽  
Author(s):  
K.W. Jang ◽  
Il Ho Kim ◽  
Jung Il Lee ◽  
Good Sun Choi

Non-stoichiometric Zn4-xSb3 compounds with x=0~0.5 were prepared by vacuum melting at 1173K and annealing solidified ingots at 623K. Electrical resistivity and Seebeck coefficient at 450K increased from 1.8cm and 145K-1 for Zn4Sb3(x=0) to 56.2cm 350K-1 for Zn3.5Sb3(x=0.5) due to the decrease of the carrier concentration. Hall mobility and carrier concentration was 31.5cm2V-1s-1 and 1.32X1020cm-3 for Zn4Sb3 and 70cm2V-1s-1 and 2.80X1018cm-3 for Zn3.5Sb3. Electrical resistivity of Zn4-xSb3 with x=0~0.2 showed linearly increasing temperature dependence, whereas those of Zn4-xSb3 with x=0.3~0.5 above 450 K tended to decrease. Thermal conductivity of Zn4Sb3 was 8.5mWcm-1K-1 at room temperature and that of Zn4-xSb3 with x≥0.3 was around 11mWcm-1K-1. Maximum ZT of Zn4Sb3 was obtained around 1.3 at 600K. Zn4Sb3 with x=0.3~0.5 showed very small value of ZT=0.2~0.3.


1990 ◽  
Vol 201 ◽  
Author(s):  
Honglie Shen ◽  
Genqing Yang ◽  
Zuyao Zhou ◽  
Guanqun Xia ◽  
Shichang Zou

AbstractDual implantations of Si+ and P+ into InP:Fe were performed both at 200°C and room temperature. Si+ ions were implanted by 150keV with doses ranging from 5×1013 /cm2 to 1×1015 /cm2, while P+ ions were implanted by 110keV. 160keV and 180keV with doses ranging from 1×l013 /cm2 to 1×1015 /cm2. Hall measurements and photoluminescence spectra were used to characterize the silicon nitride encapsulated annealed samples. It was found that enhanced activation can be obtained by Si+ and P+ dual implantations. The optimal condition for dual implantations is that the atomic distribution of implanted P overlaps that of implanted si with the same implant dose. For a dose of 5×l014 /cm2, the highest activation for dual implants is 70% while the activation for single implant is 40% after annealing at 750°C for 15 minutes. PL spectrum measurement was carried out at temperatures from 11K to 100K. A broad band at about 1.26eV was found in Si+ implanted samples, of which the intensity increased with increasing of the Si dose and decreased with increasing of the co-implant P+ dose. The temperature dependence of the broad band showed that it is a complex (Vp-Sip) related band. All these results indicate that silicon is an amphoteric species in InP.


2001 ◽  
Vol 692 ◽  
Author(s):  
K. S. Huh ◽  
D. K. Hwang ◽  
K. H. Bang ◽  
M. K. Hong ◽  
D. H. Lee ◽  
...  

AbstractA series of ZnO thin films with various deposition temperatures were prepared on (100) GaAs substrates by radio-frequency magnetron sputtering using ZnO target. The ZnO films were studied by field emission scanning electron microscope(FESEM), x-ray diffraction(XRD), photoluminescence(PL), cathodoluminescence(CL), and Hall measurements. The structural, optical, and electrical properties of the films were discussed as a function of the deposition temperature. With increasing temperature, the compressive stress in the films was released and their crystalline and optical properties were improved. From the depth profile of As measured by secondary ion mass spectrometry(SIMS), As doping was confirmed, and, in order to activate As dopant atoms, post-annealing treatment was performed. After annealing treatment, electrical and optical properties of the films were changed.


1996 ◽  
Vol 460 ◽  
Author(s):  
M. Moriwaki ◽  
K. Ito ◽  
H. Inui ◽  
M. Yamaguchi

ABSTRACTThe deformation behavior of single crystals of Mo(Si,Al)2 with the C40 structure has been studied as a function of crystal orientation and Al content in the temperature range from room temperature to 1500°C in compression. Plastic flow is possible only above 1100°C for orientations where slip along <1120> on (0001) is operative and no other slip systems are observed over whole temperature range investigated. The critical resolved shear stress for basal slip decreases rapidly with increasing temperature and the Schmid law is valid. Basal slip appears to occur through a synchroshear mechanism, in which a-dislocations (b=1/3<1120>) dissociate into two synchro-partial dislocations with the identical Burgers vector(b*1/6<1120>) and each synchro-partial further dissociates into two partials on two adjacent planes.


2021 ◽  
Vol 21 (4) ◽  
pp. 2185-2195
Author(s):  
Jeferson Matos Hrenechen ◽  
Celso de Araujo Duarte ◽  
Ney Pereira Mattoso Filho ◽  
Evaldo Ribeiro

The present work describes the preparation and the investigation of the room temperature electrical and optical properties of a series of liquid nanocomposites (lnC) prepared with different concentrations of multiwalled carbon nanotubes (MWCNT) in a variety of liquid matrices: glycerin, Vaseline, glucose, propylene glycol and silicone oil (SIO). Special attention is deserved to the SIO matrix, owing to its convenient electrical properties for our purposes. We verified that a small percent fraction of MWCNT dispersed along the SIO matrix is capable of improving the electrical conductivity of the matrix by orders of magnitude, indicating that the MWCNT strongly participates in the electrical conduction mechanism. Also, the application of an external electric field to this lnC resulted in large changes in the optical transmittance, that were interpreted as a consequence of the fieldinduced MWCNT alignment into the liquid matrix. The characteristics of such a new category of nanocomposite in the liquid state suggest further studies.


2012 ◽  
Vol 36 (1) ◽  
pp. 97-107 ◽  
Author(s):  
Mehnaz Sharmin ◽  
Shamima Choudhury ◽  
Nasrin Akhtar ◽  
Tahmina Begum

Electrical properties such as electrical resistivity, Hall coefficient, Hall mobility, carrier concentration of p-type GaAs samples were studied at room temperature (300 K). Resistivity was  found to be of the order of 5.6 × 10-3?-cm. The Hall coefficient (RH) was calculated to be 7.69 × 10-1cm3/C and Hall mobility (?H) was found to be 131cm2/V-s at room temperature from Hall effect   measurements. Carrier concentration was estimated to be 8.12 × 1018/cm3 and the Fermi level was calculated directly from carrier density data which was 0.33 eV. Photoconductivity measurements  were carried on by varying sample current, light intensity and temperature at constant chopping     frequency 45.60 Hz in all the cases mentioned above. It was observed that within the range of sample current 0.1 - 0.25mA photoconductivity remains almost constant at room temperature 300K and it was found to be varying non-linearly with light intensity within the range 37 - 12780 lux. Photoconductivity was observed to be increasing linearly with temperature between 308 and 428 K. Absorption coefficient (?) of the samples has been studied with variation of wavelength (300 -  2500 nm). The value of optical band gap energy was calculated between 1.34 and 1.41eV for the material from the graph of (?h?)2 plotted against photon energy. The value of lattice parameter (a) was found to be 5.651 by implying X-ray diffraction method (XRD).DOI: http://dx.doi.org/10.3329/jbas.v36i1.10926Journal of Bangladesh Academy of Sciences, Vol. 36, No. 1, 97-107, 2012 


2009 ◽  
Vol 97 (4) ◽  
pp. 821-828 ◽  
Author(s):  
Gilho Kim ◽  
Jungsik Bang ◽  
Yunseok Kim ◽  
S. K. Rout ◽  
Seong Ihl Woo

Sign in / Sign up

Export Citation Format

Share Document