Formation and characterization of high-density silver nanoparticles embedded in silica thin films by “in situ” self-reduction

2001 ◽  
Vol 16 (10) ◽  
pp. 2934-2938 ◽  
Author(s):  
G. Compagnini ◽  
M. M. Fragal´ ◽  
L. D'Urso ◽  
C. Spinella ◽  
O. Puglisi

Silver nanoparticles (10–20 nm) embedded into silica thin films have been obtained through the use of a silver organometallic precursor compound dissolved in Spin-On-Glass and subsequently spinned onto suitable substrates. In this paper we present a study of the shape, size, and distribution of silver particles through the use of microscopes, x-ray diffraction, and optical extinction. It has been observed that the obtained films are stable for annealing up to 500 °C with a progressive degradation above this temperature. Furthermore it is possible to obtain high-density silver particles up to 15% in weight without affecting the cluster size and shape.

2019 ◽  
Vol 14 (29) ◽  
pp. 27-36
Author(s):  
Hammad R. Humud

This work aim to prepare Ag/R6G/PMMA nanocomposite thinfilms by In-situ plasma polymerization and study the changes in theoptical properties of fluorophore due to the presence of Agnanoparticles structures in the vicinity of the R6G laser dye. Theconcentrations of R6G dye/MMA used are: 10-4M solutions wereprepared by dissolving the required quantity of the R6G dye inMMAMonomer. Then Silver nanoparticles with 50 average particlessize were mixed with MMAmonomer with concentration of 0.3, 0.5,0.7wt% to get R6G silver/MMA in liquid phase. The films weredeposited on glass substrates by dielectric barrier discharge plasmajet. The Ag/R6G/PMMA nanocomposite thin films werecharacterization by UV-Visible absorption spectra by using a doublebeam UV-Vis-NIR Spectrophotometer and fluorescenceSpectrophotometer. The thin films surface morphological analysis iscarried out by employing an AFM and SEM. the structure analysisare achieved by X-ray diffraction. The thickness of the films wasmeasured by optical interferometric method. AFM analysis showsthat the surface roughness of plasma polymerized pure PMMA thinfilms was 2.7 nm and for (10-4 R6G + 0.7wt% Ag)Ag/R6G/PMMAthin films was 4.16 nm. The SEM images were indicates that Agnanoparticles (NPs) disperse in the PMMA matrix with uniformdistribution and formed mostly spherical NPs and slightlyagglomerate. Also the silver nanoparticles with 0.7wt%concentration enhances the absorption process by 2.3 times and thefluorescence by 1.7 times. it can be conclude, that the addition of lowconcentrations of silver nanoparticles to the PMMA/ R6G matrix waschanging the optical properties of the prepared nanocomposite thinfilms.


Author(s):  
J. T. Sizemore ◽  
D. G. Schlom ◽  
Z. J. Chen ◽  
J. N. Eckstein ◽  
I. Bozovic ◽  
...  

Investigators observe large critical currents for superconducting thin films deposited epitaxially on single crystal substrates. The orientation of these films is often characterized by specifying the unit cell axis that is perpendicular to the substrate. This omits specifying the orientation of the other unit cell axes and grain boundary angles between grains of the thin film. Misorientation between grains of YBa2Cu3O7−δ decreases the critical current, even in those films that are c axis oriented. We presume that these results are similar for bismuth based superconductors and report the epitaxial orientations and textures observed in such films.Thin films of nominally Bi2Sr2CaCu2Ox were deposited on MgO using molecular beam epitaxy (MBE). These films were in situ grown (during growth oxygen was incorporated and the films were not oxygen post-annealed) and shuttering was used to encourage c axis growth. Other papers report the details of the synthesis procedure. The films were characterized using x-ray diffraction (XRD) and transmission electron microscopy (TEM).


2017 ◽  
Vol 111 (8) ◽  
pp. 082907 ◽  
Author(s):  
Seiji Nakashima ◽  
Osami Sakata ◽  
Hiroshi Funakubo ◽  
Takao Shimizu ◽  
Daichi Ichinose ◽  
...  

2018 ◽  
Vol 6 (24) ◽  
pp. 11496-11506 ◽  
Author(s):  
Paul Pistor ◽  
Thomas Burwig ◽  
Carlo Brzuska ◽  
Björn Weber ◽  
Wolfgang Fränzel

We present the identification of crystalline phases by in situ X-ray diffraction during growth and monitor the phase evolution during subsequent thermal treatment of CH3NH3PbX3 (X = I, Br, Cl) perovskite thin films.


1999 ◽  
Vol 564 ◽  
Author(s):  
K. Barmak ◽  
G. A. Lucadamo ◽  
C. Cabral ◽  
C. Lavoie ◽  
J. M. E. Harper

AbstractWe have found the dissociation behavior of immiscible Cu-alloy thin films to fall into three broad categories that correlate most closely with the form of the Cu-rich end of the binary alloy phase diagrams. The motivation for these studies was to use the energy released by the dissociation of an immiscible alloy, in addition to other driving forces commonly found in thin films and lines, to promote grain growth and texture evolution. In this work, the dissociation behavior of eight dilute (3.3 ± 0.5 at% solute) binary Cu-systems was investigated, with five alloying elements selected from group VB and VIB, two from group VillA, and one from group 1B. These alloying elements are respectively V, Nb, Ta, Cr, Mo, Fe, Ru and Ag. Several experimental techniques, including in situ resistance and stress measurements as well as in situ synchrotron x-ray diffraction, were used to follow the progress of solute precipitation in approximately 500 nm thick films. In addition, transmission electron microscopy was used to investigate the evolution of microstructure of Cu(Ta) and Cu(Ag). For all eight alloys, dissociation occurred upon heating, with the rejection of solute and evolution of microstructure and texture often occurring in multiple steps that range over several hundred degrees between approximately 100 and 900°C. However, in most cases, substantial reduction in resistivity of the films took place at temperatures of interest to metallization schemes, namely below 400°C.


2015 ◽  
Vol 3 (43) ◽  
pp. 11357-11365 ◽  
Author(s):  
Geert Rampelberg ◽  
Bob De Schutter ◽  
Wouter Devulder ◽  
Koen Martens ◽  
Iuliana Radu ◽  
...  

VO2 and V2O3 thin films were prepared during in situ XRD investigation by oxidation and reduction of V and V2O5. Films show up to 5 orders of magnitude resistance switching.


Sign in / Sign up

Export Citation Format

Share Document