Synchrotron x-ray scattering of ZnO nanorods: Periodic ordering and lattice size

2005 ◽  
Vol 20 (4) ◽  
pp. 1033-1041 ◽  
Author(s):  
Zuoming Zhu ◽  
Tamar Andelman ◽  
Ming Yin ◽  
Tsung-Liang Chen ◽  
Steven N. Ehrlich ◽  
...  

We demonstrate that synchrotron x-ray powder diffraction (XRD) is a powerful technique for studying the structure and self-organization of zinc-oxide nanostructures. Zinc-oxide nanorods were prepared by a solution-growth method that resulted in uniform nanorods with 2-nm diameter and lengths in the range 10–50 nm. These nanorods were structurally characterized by a combination of small-angle and wide-angle synchrotron XRD and transmission electron microscopy (TEM). Small-angle XRD and TEM were used to investigate nanorod self-assembly and the influence of surfactant/precursor ratio on self-assembly. Wide-angle XRD was used to study the evolution of nanorod growth as a function of synthesis time and surfactant/precursor ratio.

2013 ◽  
Vol 667 ◽  
pp. 375-379 ◽  
Author(s):  
M. Awalludin ◽  
Mohamad Hafiz Mamat ◽  
Mohd Zainizan Sahdan ◽  
Z. Mohamad ◽  
Mohamad Rusop

This paper focus on zinc oxide (ZnO) nanorods prepared using sol-gel immersion method immersed at different time. Immersion times have been varied 1~24 hr and the characteristics of each sample have been observed. The effects of immersion time on ZnO nanorods thin films have been studied in surface morphology and structural properties using Scanning Electron Microscopy (SEM) and X-ray diffractometer (XRD), respectively.


2018 ◽  
Vol 916 ◽  
pp. 107-111
Author(s):  
Menandro C. Marquez

Zinc oxide (ZnO) nanorods were grown on the pre-seeded substrate using a facile, solution route technique. The multilayer self-assembly of polyaniline (PAni) and tetrasulphonated phthalocyanine (TSCuPc) on ZnO nanorods was monitored by FTIR, UV-Vis SEM and XRD. Infrared spectrum of the assembled layer showed peaks centered at 1589cm-1and 1504 cm-1, confirmed the presence of quinoid and benzenoid structures of PAni, while peaks centered at ~1165cm-1and ~775cm-1 provided evidence for the presence of TSCuPc species. Absorption spectra of the assembled layer show broadened peaks at ~600nm and ~700nm affirmed the presence of PAni and TSCuPc molecules. A linear increase in the absorbance level at these wavelengths was also observed upon increasing the number of bilayers. The surface modification of the ZnO nanorods after self-assembly was confirmed through SEM. The edges of the ZnO nanorods was observed to change from sharp to dull upon employing layer by layer deposition of PAni and TSCuPc. XRD pattern of the assembled layer showed broadened peaks at low 2Θvalues associated to the amorphous nature of the emeraldine base of PAni. Even so, the diffraction peaks in XRD patterns of ZnO nanorods and ZnO/(TSCuPc-PAni) multilayer have been indexed as hexagonally wurtzite structure. The multilayer deposition of PAni and TSCuPc on the surface of ZnO as monitored by UV-Vis spectroscopy and confirmed by FTIR, XRD, and SEM provides a new way of anchoring dye molecules without carboxylic moieties on the surface of metal oxides


2020 ◽  
Vol 90 (7) ◽  
pp. 1132 ◽  
Author(s):  
С.С. Налимова ◽  
З.В. Шомахов ◽  
В.А. Мошников ◽  
А.А. Бобков ◽  
А.А. Рябко ◽  
...  

The features of the formation of zinc stannate nanostructures are considered that are of interest for gas sensors, solar energy and conducting transparent electronics. The samples were obtained by hydrothermal method using zinc oxide nanorods as a template with the variation of synthesis time and investigated by X-ray photoelectron spectroscopy. It is shown that this method can be used to analyze the formation of zinc stannate.


2018 ◽  
Vol 5 (8) ◽  
pp. 180510 ◽  
Author(s):  
Laurent Schlur ◽  
Jeremy Ramos Calado ◽  
Denis Spitzer

Cantilevers are really promising sensitive sensors despite their small surface. In order to increase this surface and consequently their sensitivity, we nanostructured them with zinc oxide (ZnO) nanorods or nanotubes having a diameter of approximately 100 nm and a length of 1 µm. The nanostructure growth was first optimized on a silicon wafer and then transferred to the cantilevers. The ZnO nanorods were grown in an autoclave. The centre of the nanorods was dissolved in order to obtain nanotubes. The dissolution conditions were optimized in order to have the longest etching depth. After 1.25 h in a dissolution solution containing 0.75 wt% of NH 3(aq) and 0.75 wt% of cetyltrimethyl ammonium bromide, the longest etching depth was obtained. After the transfer of the syntheses to the cantilevers, nanorods/nanotubes grew on both sides of the cantilever, which prevents the reflection of the laser allowing the resonance frequency measurement. A masking procedure was developed in order to avoid the growth on one face of the cantilever of zinc oxide nanostructures. As far as the authors are concerned, for the first time, zinc oxide nanotubes were synthesized on only one face of cantilevers with optical readout.


Nanomaterials ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 794 ◽  
Author(s):  
Amine Achour ◽  
Mohammad Islam ◽  
Sorin Vizireanu ◽  
Iftikhar Ahmad ◽  
Muhammad Aftab Akram ◽  
...  

Although the origin and possible mechanisms for green and yellow emission from different zinc oxide (ZnO) forms have been extensively investigated, the same for red/orange PL emission from ZnO nanorods (nR) remains largely unaddressed. In this work, vertically aligned zinc oxide nanorods arrays (ZnO nR) were produced using hydrothermal process followed by plasma treatment in argon/sulfur hexafluoride (Ar/SF6) gas mixture for different time. The annealed samples were highly crystalline with ~45 nm crystallite size, (002) preferred orientation, and a relatively low strain value of 1.45 × 10−3, as determined from X-ray diffraction pattern. As compared to as-deposited ZnO nR, the plasma treatment under certain conditions demonstrated enhancement in the room temperature photoluminescence (PL) emission intensity, in the visible orange/red spectral regime, by a factor of 2. The PL intensity enhancement induced by SF6 plasma treatment may be attributed to surface chemistry modification as confirmed by X-ray photoelectron spectroscopy (XPS) studies. Several factors including presence of hydroxyl group on the ZnO surface, increased oxygen level in the ZnO lattice (OL), generation of F–OH and F–Zn bonds and passivation of surface states and bulk defects are considered to be active towards red/orange emission in the PL spectrum. The PL spectra were deconvoluted into component Gaussian sub-peaks representing transitions from conduction-band minimum (CBM) to oxygen interstitials (Oi) and CBM to oxygen vacancies (VO) with corresponding photon energies of 2.21 and 1.90 eV, respectively. The optimum plasma treatment route for ZnO nanostructures with resulting enhancement in the PL emission offers strong potential for photonic applications such as visible wavelength phosphors.


2019 ◽  
Author(s):  
Christian Prehal ◽  
Aleksej Samojlov ◽  
Manfred Nachtnebel ◽  
Manfred Kriechbaum ◽  
Heinz Amenitsch ◽  
...  

<b>Here we use in situ small and wide angle X-ray scattering to elucidate unexpected mechanistic insights of the O2 reduction mechanism in Li-O2 batteries.<br></b>


2019 ◽  
Author(s):  
Hao Wu ◽  
Jeffrey Ting ◽  
Siqi Meng ◽  
Matthew Tirrell

We have directly observed the <i>in situ</i> self-assembly kinetics of polyelectrolyte complex (PEC) micelles by synchrotron time-resolved small-angle X-ray scattering, equipped with a stopped-flow device that provides millisecond temporal resolution. This work has elucidated one general kinetic pathway for the process of PEC micelle formation, which provides useful physical insights for increasing our fundamental understanding of complexation and self-assembly dynamics driven by electrostatic interactions that occur on ultrafast timescales.


Soft Matter ◽  
2021 ◽  
Vol 17 (11) ◽  
pp. 3096-3104
Author(s):  
Valeria Castelletto ◽  
Jani Seitsonen ◽  
Janne Ruokolainen ◽  
Ian W. Hamley

A designed surfactant-like peptide is shown, using a combination of cryogenic-transmission electron microscopy and small-angle X-ray scattering, to have remarkable pH-dependent self-assembly properties.


Polymer ◽  
2001 ◽  
Vol 42 (21) ◽  
pp. 8965-8973 ◽  
Author(s):  
Zhi-Gang Wang ◽  
Xuehui Wang ◽  
Benjamin S. Hsiao ◽  
Saša Andjelić ◽  
Dennis Jamiolkowski ◽  
...  

2008 ◽  
Vol 8 (11) ◽  
pp. 5854-5857 ◽  
Author(s):  
Guangping Zhu ◽  
Chunxiang Xu ◽  
Jing Zhu ◽  
Changgui Lu ◽  
Yiping Cui ◽  
...  

High density zinc oxide nanorods with uniform size were synthesized on (100) silicon substrate by vapor-phase transport method. The scanning electron microscopy images reveal that the nanorods have an average diameter of about 400 nm. The X-ray diffraction pattern demonstrates the wurtzite crystalline structure of the ZnO nanorods growing along [0001] direction. The single-photon excited photoluminescence presents a strong ultraviolet emission band at 394 nm and a weak visible emission band at 600 nm. When the ZnO nanorods were respectively pumped by various wavelength lasers from 520 nm to 700 nm, two-photon excited ultraviolet photoluminescence was observed. The dependence of the two-photon excited photoluminescence intensity on the excitation wavelength and power was investigated in detail.


Sign in / Sign up

Export Citation Format

Share Document