Effect of grain refinement and phase composition on room temperature superplasticity and damping capacity of dual-phase Zn–Al alloys

2018 ◽  
Vol 33 (8) ◽  
pp. 1032-1045 ◽  
Author(s):  
Muhammet Demirtas ◽  
Kadri C. Atli ◽  
Harun Yanar ◽  
Gencaga Purcek

Abstract

Author(s):  
Qiang Li ◽  
Jian Wang ◽  
Haiyan Wang ◽  
Xinghang Zhang

Abstract Al alloys often suffer from low mechanical strength and lack high-temperature microstructural and mechanical robustness. A series of binary and ternary nanocrystalline (NC) Al transition metal alloys with supersaturated solid solution and columnar nanograins have been recently developed by using magnetron sputtering, manifesting a new realm of mechanical properties and thermal stability. Distinct solutes cause evident differences in the phase transformations and efficiencies for grain refinement and crystalline-to-amorphous transition. Certain sputtered Al-TM alloys have shown room-temperature mechanical strengths greater than 2 GPa and outstanding thermal stability up to 400 °C. In addition, the NC Al alloys show mechanical anisotropy and tension–compression asymmetry, revealed by micromechanical tests. Through the process encapsulating various compositionally distinct systems, we attempt to illuminate the solute effects on grain refinement and properties and more importantly, tentatively unravel the design criteria for high-strength and yet thermally stable NC Al alloys. Graphic Abstract


2019 ◽  
Vol 12 (03) ◽  
pp. 1950032 ◽  
Author(s):  
Yuchen Deng ◽  
Yaming Zhang ◽  
Nanlong Zhang ◽  
Qiang Zhi ◽  
Bo Wang ◽  
...  

Pure dense silicon carbide (SiC) ceramics were obtained via the high-temperature physical vapor transport (HTPVT) method using graphite paper as the growth substrate. The phase composition, the evolution of microstructure, the thermal diffusivity and thermal conductivity at RT to 200∘C were investigated. The obtained samples had a relative density of higher than 98.7% and a large grain size of 1[Formula: see text]mm, the samples also had a room-temperature thermal conductivity of [Formula: see text] and with the temperature increased to 200∘C, the thermal conductivity still maintained at [Formula: see text].


2016 ◽  
Vol 78 (6-9) ◽  
Author(s):  
Intan Fadhlina Mohamed ◽  
Seungwon Lee ◽  
Kaveh Edalati ◽  
Zenji Horita ◽  
Shahrum Abdullah ◽  
...  

This work presents a study related to the grain refinement of an aluminum A2618 alloy achieved by High-Pressure Torsion (HPT) known as a process of Severe Plastic Deformation (SPD). The HPT is conducted on disks of the alloy under an applied pressure of 6 GPa for 1 and 5 turns with a rotation speed of 1 rpm at room temperature. The HPT processing leads to microstructural refinement with an average grain size of ~250 nm at a saturation level after 5 turns. Gradual increases in hardness are observed from the beginning of straining up to a saturation level. This study thus suggests that hardening due to grain refinement is attained by the HPT processing of the A2618 alloy at room temperature.


2012 ◽  
Vol 27 (21) ◽  
pp. 2790-2797 ◽  
Author(s):  
Jichun Dai ◽  
Mark Easton ◽  
Suming Zhu ◽  
Guohua Wu ◽  
Wenjiang Ding

Abstract


2013 ◽  
Vol 710 ◽  
pp. 170-173
Author(s):  
Lian Ping Chen ◽  
Yuan Hong Gao

It is hardly possible to obtain rare earth doped CaWO4thin films directly through electrochemical techniques. A two-step method has been proposed to synthesize CaWO4:(Eu3+,Tb3+) thin films at room temperature. X-ray diffraction, energy dispersive X-ray analysis, spectrophotometer were used to characterize their phase, composition and luminescent properties. Results reveal that (Eu3+,Tb3+)-doped CaWO4films have a tetragonal phase. When the ratio of n (Eu)/n (Tb) in the solution is up to 3:1, CaWO4:(Eu3+,Tb3+) thin film will be enriched with Tb element; on the contrary, when the ratio in the solution is lower than 1:4, CaWO4:(Eu3+,Tb3+) thin film will be enriched with Eu element. Under the excitation of 242 nm, sharp emission peaks at 612, 543, 489 and 589 nm have been observed for CaWO4:(Eu3+,Tb3+) thin films.


2015 ◽  
Vol 101 (7) ◽  
pp. 394-399
Author(s):  
Mahito Morita ◽  
Hiroyuki Y. Yasuda
Keyword(s):  

2010 ◽  
Vol 667-669 ◽  
pp. 87-90
Author(s):  
Małgorzata Lewandowska ◽  
Henryk Dybiec ◽  
Mariusz Kulczyk ◽  
Jerzy Latuch ◽  
Krzysztof J. Kurzydlowski

The aim of the present work was to compare microstructures and mechanical properties of nano-Al alloys fabricated by two different methods: (i) SPD induced grain refinement, (ii) plastic consolidation of nano-powders or nano-crystalline ribbons. SPD grain refinement has been implemented by hydrostatic extrusion, HE. The ribbons were rapidly solidified using a melt spinning methods. Plastic consolidation of powder and ribbons was conducted by warm extrusion. The results of the studies show that by applying various fabrication routes for a given chemical composition, diverse nano-structures can be obtained, which differ in terms of grain size and shape, grain boundary character and dislocation density. As a result, the alloys also differ significantly in the mechanical properties. The findings are discussed in terms of the possibilities for optimizing properties of the bulk-nano-metals.


2021 ◽  
Vol 2103 (1) ◽  
pp. 012075
Author(s):  
AA Dmitrievskiy ◽  
DG Zhigacheva ◽  
VM Vasyukov ◽  
PN Ovchinnikov

Abstract In this work, the phase composition (relative fractions of monoclinic m-ZrO2, tetragonal t-ZrO2, and cubic c-ZrO2 phases) and mechanical properties (hardness, fracture toughness, compressive strength) of alumina toughened zirconia (ATZ) ceramics, with an addition of silica were investigated. Calcium oxide was used as a stabilizer for the zirconia tetragonal phase. It was shown that CaO-ATZ+SiO2 ceramics demonstrate increased resistance to low-temperature degradation. The plasticity signs at room temperature were found due to the SiO2 addition to CaO-ATZ ceramics. A yield plateau appears in the uniaxial compression diagram at 5 mol. % SiO2 concentration. It is hypothesized that discovered plasticity is due to the increased t→m transformability.


Sign in / Sign up

Export Citation Format

Share Document