Simulation of the Mechanical Behavior of White Matter Using a Micromechanics Finite Element Method

2011 ◽  
Vol 1301 ◽  
Author(s):  
Yi Pan ◽  
Assimina A. Pelegri ◽  
David I. Shreiber

ABSTRACTThe atypical mechanical behavior of white matter and its influence on the mechanical properties of brain tissue necessitate adoption of a mutli-scale model of white matter for accurate computational analysis. Herein, we present a micromechanical analysis coupled with finite elements into a biomechanical interacting model of white matter. A representation of the white matter of central nervous system is identified and its microstructure is generated. The geometric descriptions of the axon and the surrounding matrix are obtained from neurofilament immunohistochemistry images. Consecutively, linear elastic material constitutive models are applied to describe the behavior of axons and their surrounding matrix subjected to small deformations. This model facilitates determination of the tissue’s stress and strain fields, and enables an understanding of the effects of axon undulation on local fields. The fundamental nature of the model enables future scale-up for structural tissue analysis and predictions of axon damage at the microscale.

2017 ◽  
Vol 10 (5) ◽  
pp. 1087-1112 ◽  
Author(s):  
D. C. BORGES ◽  
W. M. G. QUARESMA ◽  
G. R. FERNANDES ◽  
J. J. C. PITUBA

Abstract This work deals with numerical modeling of mechanical behavior in quasi-brittle materials, such as concrete. For this propose, a two-dimensional meso-scale model based on RVE existence is presented. The material is considered as a three-phase material consisting of interface zone (ITZ), matrix and inclusions - each constituent modeled by an independent constitutive model. The Representative Volume Element (RVE) consists of inclusions idealized as circular shapes symmetrically and non-symmetrically placed into the specimen. The interface zone is modeled by means of cohesive contact finite elements. The inclusion is modeled as linear elastic and matrix region is considered as elastoplastic material. Our main goal here is to show a computational homogenization-based approach as an alternative to complex macroscopic constitutive models for the mechanical behavior of the brittle materials using a finite element procedure within a purely kinematical multi-scale framework. Besides, the fundamental importance of the representing dissipative phenomena in the interface zone to model the complex microstructural responses of materials like concrete is focused in this work. A set of numerical examples, involving the microcracking processes, is provided in order to illustrate the performance of the proposed modeling.


2011 ◽  
Vol 70 ◽  
pp. 225-230 ◽  
Author(s):  
Agnieszka Derewonko ◽  
Andrzej Kiczko

The purpose of this paper is to describe the selection process of a rubber-like material model useful for simulation behaviour of an inflatable air cushion under multi-axial stress states. The air cushion is a part of a single segment of a pontoon bridge. The air cushion is constructed of a polyester fabric reinforced membrane such as Hypalon®. From a numerical point of view such a composite type poses a challenge since numerical ill-conditioning can occur due to stiffness differences between rubber and fabric. Due to the analysis of the large deformation dynamic response of the structure, the LS-Dyna code is used. Since LS-Dyna contains more than two-hundred constitutive models the inverse method is used to determine parameters characterizing the material on the base of results of the experimental test.


2018 ◽  
Vol 233 ◽  
pp. 00025
Author(s):  
P.V. Polydoropoulou ◽  
K.I. Tserpes ◽  
Sp.G. Pantelakis ◽  
Ch.V. Katsiropoulos

In this work a multi-scale model simulating the effect of the dispersion, the waviness as well as the agglomerations of MWCNTs on the Young’s modulus of a polymer enhanced with 0.4% MWCNTs (v/v) has been developed. Representative Unit Cells (RUCs) have been employed for the determination of the homogenized elastic properties of the MWCNT/polymer. The elastic properties computed by the RUCs were assigned to the Finite Element (FE) model of a tension specimen which was used to predict the Young’s modulus of the enhanced material. Furthermore, a comparison with experimental results obtained by tensile testing according to ASTM 638 has been made. The results show a remarkable decrease of the Young’s modulus for the polymer enhanced with aligned MWCNTs due to the increase of the CNT agglomerations. On the other hand, slight differences on the Young’s modulus have been observed for the material enhanced with randomly-oriented MWCNTs by the increase of the MWCNTs agglomerations, which might be attributed to the low concentration of the MWCNTs into the polymer. Moreover, the increase of the MWCNTs waviness led to a significant decrease of the Young’s modulus of the polymer enhanced with aligned MWCNTs. The experimental results in terms of the Young’s modulus are predicted well by assuming a random dispersion of MWCNTs into the polymer.


Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1246
Author(s):  
Tengfei Wang ◽  
Hui Luo ◽  
Xu Jing ◽  
Jiali Yang ◽  
Meijun Huo ◽  
...  

Water-soluble fluorescent carbon dots (CDs) were synthesized by a hydrothermal method using citric acid as the carbon source and ethylenediamine as the nitrogen source. The repeated and scale-up synthetic experiments were carried out to explore the feasibility of macroscopic preparation of CDs. The CDs/Fe3+ composite was prepared by the interaction of the CDs solution and Fe3+ solution. The optical properties, pH dependence and stability behavior of CDs or the CDs/Fe3+ composite were studied by ultraviolet spectroscopy and fluorescence spectroscopy. Following the principles of fluorescence quenching after the addition of Fe3+ and then the fluorescence recovery after the addition of asorbic acid, the fluorescence intensity of the carbon dots was measured at λex = 360 nm, λem = 460 nm. The content of ascorbic acid was calculated by quantitative analysis of the changing fluorescence intensity. The CDs/Fe3+ composite was applied to the determination of different active molecules, and it was found that the composite had specific recognition of ascorbic acid and showed an excellent linear relationship in 5.0–350.0 μmol·L−1. Moreover, the detection limit was 3.11 μmol·L−1. Satisfactory results were achieved when the method was applied to the ascorbic acid determination in jujube fruit. The fluorescent carbon dots composites prepared in this study may have broad application prospects in a rapid, sensitive and trace determination of ascorbic acid content during food processing.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Zude Ding ◽  
Jincheng Wen ◽  
Xiafei Ji ◽  
Zhihua Ren ◽  
Sen Zhang

The presence of voids or lining thinning directly affects the mechanical behavior of linings, and these defects threaten the safety of tunnel operation. In this study, a series of 1/5-scale model tests was used to investigate the mechanical behavior of normal concrete (NC) linings in consideration of voids and combined defects. Test results showed that the void and combined defects substantially reduced the load-bearing capacity and deformation properties of the linings. The inelastic mechanical behavior of the linings was also significantly affected by the defects. The effects of lining defects located at the spandrel were slightly weaker than those of lining defects located at the crown. As the void size or degree of combined defects increased, the tensile strain at the location of the lining defects also increased. Therefore, the defect position of the linings was easily damaged. The defects considerably reduced the overall deformation of the linings but increased the local deformation. The distribution of lining cracks was concentrated at the defect position. In addition, different failure characteristics of the lining were observed due to the differences in defects.


Author(s):  
John Halkyard ◽  
Senu Sirnivas ◽  
Samuel Holmes ◽  
Yiannis Constantinides ◽  
Owen H. Oakley ◽  
...  

Floating spar platforms are widely used in the Gulf of Mexico for oil production. The spar is a bluff, vertical cylinder which is subject to Vortex Induced Motions (VIM) when current velocities exceed a few knots. All spars to date have been constructed with helical strakes to mitigate VIM in order to reduce the loads on the risers and moorings. Model tests have indicated that the effectiveness of these strakes is influenced greatly by details of their design, by appurtenances placed on the outside of the hull and by current direction. At this time there is limited full scale data to validate the model test results and little understanding of the mechanisms at work in strake performance. The authors have been investigating the use of CFD as a means for predicting full scale VIM performance and for facilitating the design of spars for reduced VIM. This paper reports on the results of a study to benchmark the CFD results for a truss spar with a set of model experiments carried out in a towing tank. The focus is on the effect of current direction, reduced velocity and strake pitch on the VIM response. The tests were carried out on a 1:40 scale model of an actual truss spar design, and all computations were carried out at model scale. Future study will consider the effect of external appurtenances on the hull and scale-up to full scale Reynolds’ numbers on the results.


2021 ◽  
pp. 107754632110458
Author(s):  
Hamze Mousavi ◽  
Moein Mirzaei ◽  
Samira Jalilvand

The present work investigates the vibrational properties of a DNA-like structure by means of a harmonic Hamiltonian and the Green’s function formalism. The DNA sequence is considered as a quasi one-dimensional system in which the mass-spring pairs are randomly distributed inside each crystalline unit. The sizes of the units inside the system are increased, in a step-by-step approach, so that the actual condition of the DNA could be modeled more accurately. The linear-elastic forces mimicking the bonds between the pairs are initially considered constant along the entire length of the system. In the next step, these forces are randomly shuffled so as to take into account the inherent randomness of the DNA. The results reveal that increasing the number of mass-spring pairs in the crystalline structure decreases the influence of randomness on the mechanical behavior of the structure. This also holds true for systems with larger crystalline units. The obtained results can be used to investigate the mechanical behavior of similar macro-systems.


Author(s):  
Matylda Tankiewicz

Abstract In the paper the results of laboratory investigations of structure of layered soil are presented. They focus on varved clay that is a soil composed of two alternately arranged varves with different texture and mechanical properties. An effect of such structure is an anisotropy of the material. Due to varying conditions during its formation process the soil exhibits some irregularities in composition and structure. Due to that modelling of mechanical behavior, like strength, may not provide satisfactory results. Main purpose of the examinations is an investigation of internal structure of layered soil – varved clay – in relation to its strength anisotropy and evaluation of the suitability of the use of two different techniques to assess the soil structure. Investigated material have been taken from area near city of Bełchatów in central Poland. The examinations included investigation of particle size distribution of soil and its components, identification of lamination with use of scanning electron microscope (SEM) and computed microtomography technique (μCT). First, the texture of each varve and varved clay as a composite have been estimated. Next, the investigation of surface perpendicular to the lamination have been carried out with SEM. Pictures of varves with different magnifications are presented. Also the varves arrangement and details of layers contact area are shown. Finally, investigation of internal structure of the soil have been performed by using microtomograph. The outcome is a series of radiographic images and reconstructed 3D model of tested soil. Presented results show complexity of the structure of varved clay that affect the mechanical behavior. Determination of the structure with use of presented techniques may be helpful in examination of strength properties and proper modeling of such soil.


Sign in / Sign up

Export Citation Format

Share Document