Spin reorientation transition: phase diagrams and entropy change

2011 ◽  
Vol 1310 ◽  
Author(s):  
Vittorio Basso ◽  
Carlo P. Sasso ◽  
Michaela Kuepferling

ABSTRACTIn this paper we review the phase diagram and derive the entropy change for spin reorientation transitions by considering first order magnetization process theory with temperature dependent magneto-crystalline anisotropy constants. We derive the magnetic field-induced entropy change Δs for a transition between easy axis and easy plane, showing that for alternating magnetic field, Δs has a change of sign at the reorientation temperature, while for rotating magnetic field its sign is definite. We apply the model to CoZn W-type barium ferrite.

2021 ◽  
Vol 7 (5) ◽  
pp. 60
Author(s):  
Luis M. Moreno-Ramírez ◽  
Victorino Franco

The applicability of magnetocaloric materials is limited by irreversibility. In this work, we evaluate the reversible magnetocaloric response associated with magnetoelastic transitions in the framework of the Bean-Rodbell model. This model allows the description of both second- and first-order magnetoelastic transitions by the modification of the η parameter (η<1 for second-order and η>1 for first-order ones). The response is quantified via the Temperature-averaged Entropy Change (TEC), which has been shown to be an easy and effective figure of merit for magnetocaloric materials. A strong magnetic field dependence of TEC is found for first-order transitions, having a significant increase when the magnetic field is large enough to overcome the thermal hysteresis of the material observed at zero field. This field value, as well as the magnetic field evolution of the transition temperature, strongly depend on the atomic magnetic moment of the material. For a moderate magnetic field change of 2 T, first-order transitions with η≈1.3−1.8 have better TEC than those corresponding to stronger first-order transitions and even second-order ones.


2012 ◽  
Vol 26 (28) ◽  
pp. 1250183 ◽  
Author(s):  
VLADIMIR NAZAROV ◽  
RISHAT SHAFEEV

Theoretically, with the aid of a soliton model, the evolution of a new-phase nucleus near the first-order spin-reorientation phase transition in magnets has been investigated in an external magnetic field. The influence of an external field and one-dimensional defects of magnetic anisotropy on the dynamics of such nucleus has been demonstrated. The conditions for the localization of the new-phase nucleus in the region of the magnetic anisotropy defect and for its escape from the defect have been determined. The values of the critical fields which bring about the sample magnetization reversal have been identified and estimated.


1972 ◽  
Vol 50 (18) ◽  
pp. 2122-2137
Author(s):  
R. Turner ◽  
J. F. Cochran

According to Van Gelder the microwave absorption by a thin metal film in the presence of a static magnetic field normal to the film contains a series of peaks as the magnetic field is varied. In the present paper it is argued that these peaks correspond to Doppler-shifted cyclotron resonances of the carriers in the metal due to the quantization of electron momenta normal to the plane of the film. A simple quantum calculation is presented for the case of free electrons where the film is thin enough that to first order the microwave fields within are determined only by the boundary conditions and Maxwell's equations. The quantum expression is in good agreement with the absorption calculated using semiclassical arguments which can be readily extended to more complicated Fermi surfaces.


2002 ◽  
Vol 12 (9) ◽  
pp. 389-389
Author(s):  
W. G. Clark ◽  
F. Zamborsky ◽  
B. Alavi ◽  
P. Vonlanthen ◽  
W. Moulton ◽  
...  

We report proton NMR measurements of the effect of very high magnetic fields up to 44.7 T (1.9 GHz) on the spin density wave (SDW) transition of the organic conductor TMTSF2PF6. Up to 1.8 GHz, no effect of critical slowing close to the transition is seen on the proton relaxation rate (1/T1), which is determined by the SDW fluctuations associated with the phase transition at the NMR frequency. Thus, the correlation time for such fluctuations is less than $1O^{-10}$s. A possible explanation for the absence of longer correlation times is that the transition is weakly first order, so that the full critical divergence is never achieved. The measurements also show a dependence of the transition temperature on the orientation of the magnetic field and a quadratic dependence on its magnitude that agrees with earlier transport measurements at lower fields. The UCLA part of this work was supported by NSF Grant DMR-0072524.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Sheng Ran ◽  
Shanta R. Saha ◽  
I-Lin Liu ◽  
David Graf ◽  
Johnpierre Paglione ◽  
...  

AbstractMagnetic field-induced superconductivity is a fascinating quantum phenomenon, whose origin is yet to be fully understood. The recently discovered spin-triplet superconductor, UTe2, exhibits two such superconducting phases, with the second one reentering in the magnetic field of 45 T and persisting up to 65 T. More surprisingly, in order to induce this superconducting phase, the magnetic field has to be applied in a special angle range, not along any high symmetry crystalline direction. Here we investigated the evolution of this high-field-induced superconducting phase under pressure. Two superconducting phases merge together under pressure, and the zero resistance persists up to 45 T, the field limit of the current study. We also reveal that the high-field-induced superconducting phase is completely decoupled from the first-order field-polarized phase transition, different from the previously known example of field-induced superconductivity in URhGe, indicating superconductivity boosted by a different paring mechanism.


Author(s):  
Kenichi Kamioka ◽  
Ryuichiro Yamane

The experiments are conducted on the magnetic fluid flow induced by the multi-pole rotating magnetic field in a circular cylinder. The numbers of poles are two, four, six, eight and twelve. The applied electric current and frequency are 2∼6 A and 20∼60 Hz, respectively. The peak velocity of the flow increases with the increase in the strength and the phase velocity of the magnetic field. As the increase in the number of poles, the flow shifts to the outer periphery.


Author(s):  
Shyeh Tjing Loi ◽  
John C B Papaloizou

Abstract Observations of pressure-gravity mixed modes, combined with a theoretical framework for understanding mode formation, can yield a wealth of information about deep stellar interiors. In this paper, we seek to develop a formalism for treating the effects of deeply buried core magnetic fields on mixed modes in evolved stars, where the fields are moderate, i.e. not strong enough to disrupt wave propagation, but where they may be too strong for non-degenerate first-order perturbation theory to be applied. The magnetic field is incorporated in a way that avoids having to use this. Inclusion of the Lorentz force term is shown to yield a system of differential equations that allows for the magnetically-affected eigenfunctions to be computed from scratch, rather than following the approach of first-order perturbation theory. For sufficiently weak fields, coupling between different spherical harmonics can be neglected, allowing for reduction to a second-order system of ordinary differential equations akin to the usual oscillation equations that can be solved analogously. We derive expressions for (i) the mixed-mode quantisation condition in the presence of a field and (ii) the frequency shift associated with the magnetic field. In addition, for modes of low degree we uncover an extra offset term in the quantisation condition that is sensitive to properties of the evanescent zone. These expressions may be inverted to extract information about the stellar structure and magnetic field from observational data.


2017 ◽  
Vol 38 (4) ◽  
pp. 555-565
Author(s):  
Alicja Przybył ◽  
Rafał Rakoczy ◽  
Maciej Konopacki ◽  
Marian Kordas ◽  
Radosław Drozd ◽  
...  

Abstract The aim of the study was to present an experimental investigation of the influence of the RMF on mixing time. The obtained results suggest that the homogenization time for the tested experimental set-up depending on the frequency of the RMF can be worked out by means of the relationship between the dimensionless mixing time number and the Reynolds number. It was shown that the magnetic field can be applied successfully to mixing liquids.


Sign in / Sign up

Export Citation Format

Share Document