Transmission Fourier Transform Infra-red Spectroscopy Investigation of Structure Property Relationships in Low-k SiOxCy:H Dielectric Thin Films

2012 ◽  
Vol 1520 ◽  
Author(s):  
Sean W. King ◽  
Ebony Mays ◽  
Canay Ege ◽  
Niklas Hellgren ◽  
Jessica Xu ◽  
...  

ABSTRACTIn order to understand the structure property relationships for inorganic low dielectric constant (i.e. low-k) materials, transmission Fourier Transform-Infrared (FTIR) spectroscopy has been utilized to study the local bonding structure in various plasma enhanced chemically vapor deposited low-k materials in the SiOxCy:H phase diagram. The FTIR measurements were combined with additional mechanical, electrical, and optical property measurements to elucidate the structure property relationships for these materials. The combined measurements show that increased incorporation of terminal methyl bonding results in a decrease in network bonding that manifests itself in a reduction in mass density, dielectric constant, refractive index, Young’s modulus and many other important material properties.

1999 ◽  
Vol 565 ◽  
Author(s):  
Michael Morgen ◽  
Jie-Hua Zhao ◽  
Michael Hay ◽  
Taiheui Cho ◽  
Paul S. Ho

AbstractIn recent years there have been widespread efforts to identify low dielectric constant materials that can satisfy a number of diverse performance requirements necessary for successful integration into IC devices. This has led to extensive efforts to develop low k materials and the associated process integration. A particularly difficult challenge for material development has been to find the combination of low dielectric constant and good thermal and mechanical stability. In this paper recent characterization results for low k materials performed at the University of Texas will be reviewed, with an emphasis on the relationship of chemical structure to the aforementioned key material properties. For example, measurements showing the effect of film porosity on dielectric constant and thermal and mechanical properties is presented. This data, as well as that for other material types, demonstrates the tradeoffs between dielectric constant and thermomechanical properties that are often made during the course of material development.


1999 ◽  
Vol 565 ◽  
Author(s):  
Y. Shimogaki ◽  
S. W. Lim ◽  
E. G. Loh ◽  
Y. Nakano ◽  
K. Tada ◽  
...  

AbstractLow dielectric constant F-doped silicon oxide films (SiO:F) can be prepared by adding fluorine source, like as CF4 to the conventional PECVD processes. We could obtain SiO:F films with dielectric constant as low as 2.6 from the reaction mixture of SiH4/N2 O/CF4. The structural changes of the oxides were sensitively detected by Raman spectroscopy. The three-fold ring and network structure of the silicon oxides were selectively decreased by adding fluorine into the film. These structural changes contribute to the decrease ionic polarization of the film, but it was not the major factor for the low dielectric constant. The addition of fluorine was very effective to eliminate the Si-OH in the film and the disappearance of the Si-OH was the key factor to obtain low dielectric constant. A kinetic analysis of the process was also performed to investigate the reaction mechanism. We focused on the effect of gas flow rate, i.e. the residence time of the precursors in the reactor, on growth rate and step coverage of SiO:F films. It revealed that there exists two species to form SiO:F films. One is the reactive species which contributes to increase the growth rate and the other one is the less reactive species which contributes to have uniform step coverage. The same approach was made on the PECVD process to produce low-k C:F films from C2F4, and we found ionic species is the main precursor to form C:F films.


2003 ◽  
Vol 766 ◽  
Author(s):  
Jin-Heong Yim ◽  
Jung-Bae Kim ◽  
Hyun-Dam Jeong ◽  
Yi-Yeoul Lyu ◽  
Sang Kook Mah ◽  
...  

AbstractPorous low dielectric films containing nano pores (∼20Å) with low dielectric constant (<2.2), have been prepared by using various kinds of cyclodextrin derivatives as porogenic materials. The pore structure such as pore size and interconnectivity can be controlled by changing functional groups of the cyclodextrin derivatives. We found that mechanical properties of porous low-k thin film prepared with mCSSQ (modified cyclic silsesquioxane) precursor and cyclodextrin derivatives were correlated with the pore interconnection length. The longer the interconnection length of nanopores in the thin film, the worse the mechanical properties of the thin film (such as hardness and modulus) even though the pore diameter of the films were microporous (∼2nm).


Author(s):  
Swati Gupta ◽  
Anil Gaikwad ◽  
Ashok Mahajan ◽  
Lin Hongxiao ◽  
He Zhewei

Low dielectric constant (Low-[Formula: see text]) films are used as inter layer dielectric (ILD) in nanoelectronic devices to reduce interconnect delay, crosstalk noise and power consumption. Tailoring capability of porous low-[Formula: see text] films attracted more attention. Present work investigates comparative study of xerogel, aerogel and porogen based porous low-[Formula: see text] films. Deposition of SiO2 and incorporation of less polar bonds in film matrix is confirmed using Fourier Transform Infra-Red Spectroscopy (FTIR). Refractive indices (RI) of xerogel, aerogel and porogen based low-[Formula: see text] films observed to be as low as 1.25, 1.19 and 1.14, respectively. Higher porosity percentage of 69.46% is observed for porogen-based films while for shrinked xerogel films, it is lowered to 45.47%. Porous structure of low-[Formula: see text] films has been validated by using Field Emission Scanning Electron Microscopy (FE-SEM). The pore diameters of porogen based annealed samples were in the range of 3.53–25.50 nm. The dielectric constant ([Formula: see text]) obtained from RI for xerogel, aerogel and porogen based films are 2.58, 2.20 and 1.88, respectively.


1996 ◽  
Vol 443 ◽  
Author(s):  
Neil H. Hendricks

AbstractFor over two years, intensive efforts at SEMATECH and elsewhere have focused on identifying low dielectric constant (low ε) materials which possess all of the required properties and processing characteristics needed for integration into standard IC fabrication lines. To date, no material candidate has been shown to satisfy this impressive list of requirements. For some candidates, drawbacks related to material properties such as poor thermal stability or electrical performance have been identified; in other cases, problems in process integration, for example difficulties in patterning have stalled progress.In this paper, most of the current leading candidates for the low ε IC IMC application are identified and discussed. An attempt is made to correlate structure/property relationships in these materials with their relative attributes and deficiencies as they relate to the IMD application. Key differences in chemistry and property/processing characteristics are contrasted for low c silicon-oxygen polymers and for purely organic polymers. Novel dielectrics such as porous organic and inorganic thin films are also discussed in terms of their properties and associated process integration challenges. Since the needs for global planarization and low c IMD are occurring within roughly the same generation of minimum feature size (˜ 0.25 μm), the chemical mechanical polishing (CMP) of low dielectric constant thin films and/or of SiO2 layers deposited above them is briefly discussed. Both subtractive metalization and damascene processes are included, and the required low dielectric constant film properties and processing characteristics are contrasted for each process. Finally, the author's views on future trends in low dielectric constant materials development are presented, with an emphasis on identifying the types of chemical structures which may prove viable for this most demanding of all polymer film applications.


2003 ◽  
Vol 766 ◽  
Author(s):  
Do Y. Yoon ◽  
Hyun Wook Ro ◽  
Eun Su Park ◽  
Jin-Kyu Lee ◽  
Hie-Joon Kim ◽  
...  

AbstractPolysilsesquioxanes (PSSQs) with the empirical formula (RSiO3/2)n have become very important as low-dielectric insulators for copper interconnects in the next-generation logic devices, but the detailed structure-property relationships were completely lacking. We have investigated the microstructure and functional properties of PSSQs with varying alkyl substituents and also PSSQ copolymers. As a result, significant advances have been made in the scientific understanding of PSSQ structures and significant improvements of key properties such as the crack resistance, mechanical modulus and hardness, and incorporation of nanometer-sized (<4 nm) porosity for ultra-low dielectric constants (<2.0).


RSC Advances ◽  
2015 ◽  
Vol 5 (82) ◽  
pp. 66511-66517 ◽  
Author(s):  
Albert S. Lee ◽  
Sung Yeoun Oh ◽  
Seung-Sock Choi ◽  
He Seung Lee ◽  
Seung Sang Hwang ◽  
...  

Low dielectric constant poly(methyl)silsesquioxane spin-on-glass resins incorporating a cyclic precursor exhibited exceptional mechanical properties to withstand CMP processes.


Sign in / Sign up

Export Citation Format

Share Document