Estimation of the Crystallinity of P-type Hydrogenated Nanocrystalline Cubic Silicon Carbide by Conductive Atomic Force Microscopy

2012 ◽  
Vol 1426 ◽  
pp. 347-352
Author(s):  
Daisuke Hamashita ◽  
Yasuyoshi Kurokawa ◽  
Makoto Konagai

ABSTRACTP-type hydrogenated nanocrystalline cubic silicon carbide is a promising material for the emitter of n-type crystalline silicon heterojunction solar cell due to its lower light absorption and wider bandgap of 2.2 eV. The electrical properties of hydrogenated nanocrystalline cubic silicon carbide can be influenced by its crystallinity. In this study, we propose the use of conductive atomic force microscopy (Conductive-AFM) to evaluate the crystalline volume fraction (fc) of p-nc-3C-SiC:H thin films (20∼30 nm) as a new method instead of Raman scattering spectroscopy, X-ray diffraction, and spectroscopic ellipsometry.

Author(s):  
Lucile C. Teague Sheridan ◽  
Linda Conohan ◽  
Chong Khiam Oh

Abstract Atomic force microscopy (AFM) methods have provided a wealth of knowledge into the topographic, electrical, mechanical, magnetic, and electrochemical properties of surfaces and materials at the micro- and nanoscale over the last several decades. More specifically, the application of conductive AFM (CAFM) techniques for failure analysis can provide a simultaneous view of the conductivity and topographic properties of the patterned features. As CMOS technology progresses to smaller and smaller devices, the benefits of CAFM techniques have become apparent [1-3]. Herein, we review several cases in which CAFM has been utilized as a fault-isolation technique to detect middle of line (MOL) and front end of line (FEOL) buried defects in 20nm technologies and beyond.


Author(s):  
Jon C. Lee ◽  
J. H. Chuang

Abstract As integrated circuits (IC) have become more complicated with device features shrinking into the deep sub-micron range, so the challenge of defect isolation has become more difficult. Many failure analysis (FA) techniques using optical/electron beam and scanning probe microscopy (SPM) have been developed to improve the capability of defect isolation. SPM provides topographic imaging coupled with a variety of material characterization information such as thermal, magnetic, electric, capacitance, resistance and current with nano-meter scale resolution. Conductive atomic force microscopy (C-AFM) has been widely used for electrical characterization of dielectric film and gate oxide integrity (GOI). In this work, C-AFM has been successfully employed to isolate defects in the contact level and to discriminate various contact types. The current mapping of C-AFM has the potential to identify micro-leaky contacts better than voltage contrast (VC) imaging in SEM. It also provides I/V information that is helpful to diagnose the failure mechanism by comparing I/V curves of different contact types. C-AFM is able to localize faulty contacts with pico-amp current range and to characterize failure with nano-meter scale lateral resolution. C-AFM should become an important technique for IC fault localization. FA examples of this technique will be discussed in the article.


2015 ◽  
Vol 54 (5S) ◽  
pp. 05EB02 ◽  
Author(s):  
Li Zhang ◽  
Masayuki Katagiri ◽  
Taishi Ishikura ◽  
Makoto Wada ◽  
Hisao Miyazaki ◽  
...  

2010 ◽  
Vol 663-665 ◽  
pp. 324-327
Author(s):  
Chao Song ◽  
Rui Huang

The germanium film and Ge/Si multilayer structure were fabricated by magnetron sputtering technique on silicon substrate at temperatures of 500°C. Raman scattering spectroscopy measurements reveal that the nanocrystalline Ge occurs in both kinds of samples. Furthermore, from the atomic force microscopy (AFM) results, it is found that the grain size as well as spatially ordering distribution of the nc-Ge can be modulated by the Ge/Si multilayer structure. The room temperature photoluminescence was also observed in the samples. However, compared with that from the nc-Ge film, the intensity of PL from the nc-Ge/a-Si multilayer film becomes weaker, which is attributed to its lower volume fraction of crystallized component.


2012 ◽  
Vol 112 (6) ◽  
pp. 064310 ◽  
Author(s):  
F. Nardi ◽  
D. Deleruyelle ◽  
S. Spiga ◽  
C. Muller ◽  
B. Bouteille ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document