Metal-Semiconductor-Insulator-Metal Structure Field-Effect Transistors Based on Zinc Oxides and Doped Ferroelectric Thin Films

2014 ◽  
Vol 1633 ◽  
pp. 131-137 ◽  
Author(s):  
Ze Jia ◽  
Jianlong Xu ◽  
Xiao Wu ◽  
Mingming Zhang ◽  
Naiwen Zhang ◽  
...  

ABSTRACTDifferent ferroelectric thin films and their related Metal-Semiconductor-Insulator-Metal (MSIM) structures include zinc oxide (ZnO) are studied, which can be utilized in back-gated ferroelectric field-effect transistors (FETs). The most ideal zinc oxide (ZnO) thin film prepared by sol-gel method are obtained under the pyrolysis temperature of 400°C and the annealing temperature of 600°C. The asymmetric or symmetric current-voltage characteristics of the heterostructures with ZnO are exhibited depending on different ferroelectric materials in them. The curves of drain current versus gate voltage for MSIM-structure FETs are investigated, in which obvious counterclockwise loops and a drain current switching ratio up to two orders of magnitude ate observed due to the modulation effect of remnant polarization on the channel resistance. The results also indicate the positive influences of impurity atom substitution in bismuth ferrite thin film for the MSIM-structure FETs.

2002 ◽  
Vol 748 ◽  
Author(s):  
R. S. Katiyar ◽  
A. Dixit ◽  
M. Jain ◽  
A. A. Savvinov ◽  
P. S. Dobal

ABSTRACTDuring a ferroelectric phase transition or domain rearrangement, ions or molecules in a ferroelectric material move in a highly cooperative manner from their initial lattice positions into the final positions they occupy and the collective response results into a “soft” lattice vibrational mode. Moreover, the structural changes are always accompanied by at least a few other changes in the normal mode behavior of the material. In the present work, Raman spectroscopy is conveniently employed to study such vibrational modes and other related phenomena in ferroelectric materials at the sub-microscale levels. We have investigated ferroelectric thin films of various lead and barium based perovskites prepared by sol-gel technique. The effect of processing conditions, A- and B- site substitutions, and size dependence on their Raman spectra were analyzed in terms of the structure-property correlations.


2015 ◽  
Vol 3 (10) ◽  
pp. 2413-2421 ◽  
Author(s):  
Yoshihiro Kubozono ◽  
Keita Hyodo ◽  
Hiroki Mori ◽  
Shino Hamao ◽  
Hidenori Goto ◽  
...  

Field-effect transistors have been fabricated that use thin films of 2,9-dialkylated phenanthro[1,2-b:8,7-b′]dithiophenes (Cn-PDTs), with the transistor based on a thin film of C12-PDT showing aμas high as ∼2 cm2V−1s−1, which is promising for future practical electronics.


2015 ◽  
Vol 749 ◽  
pp. 308-312 ◽  
Author(s):  
Shafaq Mardhiyana Mohamat Kasim ◽  
Nor Azira Akma Shaari ◽  
Raudah Abu Bakar ◽  
Sukreen Hana Herman

Single layer of titanium dioxide (TiO2) is common metal oxide in fabricating memristor device. In this study, two types of memristor with composite metal oxide thin films will be demonstrated. The two types of memristor are titanium dioxide (TiO2) thin film coated on zinc oxide (ZnO) thin film and ZnO coated on TiO2 thin film. Sol-gel spin coating method was to coat metal oxide thin film and sputtering method for depositing the metal contact. Platinum (Pt) was selected as the top electrode and indium tin oxide (ITO) as the bottom electrode. The electrical characteristics were defined by performing I-V measurement using two point probe equipment. I-V characteristics showed shape of pinched hysteresis loop for both samples. Sample with TiO2 coated on ZnO has slightly higher Roff/Ron ratio than sample ZnO coated on TiO2 which means it more memristive than another one. The cross-section of sample with TiO2 coated on ZnO had been performed as well by using Field-Emission Scanning Electron Microscopy (FESEM).


1989 ◽  
Vol 152 ◽  
Author(s):  
S. L. Swartz ◽  
P. J. Melling ◽  
C. S. Grant

ABSTRACTThe sol-gel processing of ferroelectric thin films is being investigated at Battelle. The ferroelectric materials included in this study are PbTiO3, Pb(Zr, Ti)O3 (PZT), and KNbO3. The sol-gel processing and crystallization of these films on fused silica, silicon, alumina, and single crystal SrTiO3 substrates is described.Sol-gel derived PbTiO3 thin films crystallized into the expected tetragonal perovskite structure when heated to 500 C and above. However, the crystallization of sol-gel PZT (20/80) thin films was found to be substratedependent. The heat-treated PZT films were amorphous when deposited on silica and silicon substrates. Crystalline perovskite PZT films were produced on alumina substrates, and epitaxial PZT films were produced on single-crystal SrTiO3. Heat treatment of sol-gel KNbO3 films on silicon and alumina substrates resulted in the crystallization of a variety of non-perovskite phases, but epitaxial growth of KNbO3 was observed on single crystal SrTiO3.


2006 ◽  
Vol 965 ◽  
Author(s):  
Kenji Itaka ◽  
Mitsugu Yamashiro ◽  
Jun Yamaguchi ◽  
Masamitsu Haemori ◽  
Seiichiro Yaginuma ◽  
...  

ABSTRACTOrganic thin film devices are of interest for a variety of forthcoming ubiquitous electronics applications. In order to build ubiquitous high-performance devices, it is necessary to fabricate crystalline thin films of various organic materials onto “ubiquitous substrates” that are dictated by applications. However, many organic thin films crystallize only on a limited selection of substrates. Unfortunately, promising organic molecules, which have a large overlap of pi-orbitals between molecules, cannot migrate freely on a substrate because of stronger cohesion between molecules than interaction between the molecule and the substrate. Therefore, enhancement of the molecule-substrate interaction, i.e. ‘molecular wettability’ should promote crystallization. We found that an ultrasmooth monolayer of pentacene (C22H14), which can be grown on many general dielectric substrates, changes the molecular wettability of a substrate for other poorly wettable organic materials. We also demonstrate that a field effect transistor (FET) using a crystalline C60 thin film on a pentacene-buffered substrate can have a mobility of 4.9 cm2/Vs, which is 5-fold higher than that of C60 FETs without the buffer. Molecular wetting-controlled substrates can thus offer a general solution to the fabrication of high-performance crystalline plastic and molecular electronics.


2016 ◽  
Vol 78 (5-8) ◽  
Author(s):  
Muhammad AlHadi Zulkefle ◽  
Rohanieza Abdul Rahman ◽  
Khairul Aimi Yusof ◽  
Wan Fazlida Hanim Abdullah ◽  
Mohamad Rusop Mahmood ◽  
...  

In this research, metal oxides (ZnO and TiO2) thin films were fabricated by the sol-gel spin coating method. The thin films were applied as the pH sensing membrane for the extended-gate field effect transistor (EGFET) sensor to distinguish the sensing capability between them. The surface morphology, thin film components and crystalline quality were characterized and the sensor performance of both materials were characterized and compared. The results showed that TiO2 thin film gave higher sensitivity with better linearity compared to the ZnO thin films hence was considered a more suitable material to be used as sensing membrane in EGFET pH sensor compared to zinc oxide. 


2017 ◽  
Vol 5 (24) ◽  
pp. 5872-5876 ◽  
Author(s):  
Tatsuya Mori ◽  
Tatsuya Oyama ◽  
Hideaki Komiyama ◽  
Takuma Yasuda

Strategically dialkylated bis(benzo[4,5]thieno)[2,3-b:3′,2′-d]thiophene molecules having an overall U-shaped configuration can self-organize into bilayer lamellar structures, demonstrating high charge-transport properties in thin-film organic transistors.


Polyaniline (PANI) is one of the common and extensively explored conducting polymers due to its excellent electrochemical and electrical properties. PANI thin film is an emerging area of research owing to its various applications in the field of solar cell technologies, drug delivery, organic light emitting diodes, field-effect transistors, sensors, electrochromic displays, etc. This chapter is devoted to the conclusions and future aspects of the undertaken studies in this book. This book has eight chapters that comprise the discussion of synthesis, deposition and characterization techniques, physiochemical properties, and applications of PANI thin films.


2014 ◽  
Vol 895 ◽  
pp. 460-473 ◽  
Author(s):  
Azimah Omar ◽  
Abdullah Huda ◽  
M.R. Razali ◽  
S. Shaari ◽  
M.R. Taha

Two different methods were used to synthesize and fabricate zinc oxide-carbon nanotubes (ZnO-CNTs) thin films; chemical bath deposition (CBD) and sol-gel method. Single-walled carbon nanotubes (SWCNTs) were implemented in preparing the thin films. The obtained thin films were annealed in air at different temperatures levels of 200 °C, 250 °C, 300 °C and 350 °C for 30 min. Both methods successfully grew various nanostructures of ZnO-CNTs such as nanoparticles, nanobranches and nanoflakes. The synthesized nanostructures were characterized by using field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The crystallite sizes were calculated between 38.54 nm and 6.13 nm. FESEM cross sectional images indicated the thin film thicknesses varied from 164.9 μm to 5.84 μm. The TEM images estimated the diameters of the SWCNTs in the range of 3.38 nm to 16.14 nm. TEM images also proved the presence of ZnO entangled between SWCNTs. A combination of ZnO and SWCNTs in the thin film proposes a simple and low cost CBD method to produce various ZnO-CNTs nanostructures with appropriate thickness. Keywords: zinc oxide; carbon nanotubes; nanostructures; thin film ABSTRAK Dua kaedah telah digunakan untuk mensintesiskan serta memfabrikasi filem nipis zink oksida-karbon nanotiub (ZnO-CNTs); kaedah pemendapan kubang kimia (CBD) dan sol-gel. Karbon-nanotiub berdinding satu (SWCNTs) telah digunakan dalam penyediaan filem nipis. Filem nipis yang diperolehi disepuh-lindap melalui udara pada tahap suhu yang berbeza dari 200 °C, 250 °C, 300 °C dan 350 °C selama 30 minit. Kedua-dua kaedah telah berjaya menumbuhkan pelbagai struktur nanoZnO-CNTs seperti nanozarah, nanodahan dan nanokepingan. Pencirian struktur nanoitu dilakukan menggunakan mikroskop elektron imbasan (FESEM), belauan sinar-X (XRD) dan mikroskop electron pancaran (TEM). Saiz kristal yang dikira adalah antara 38.54 nm dan 6.13 nm. Analisis bagi keratan rentas FESEM imej menunjukkan ketebalan filem yang pelbagai dari 164.9 μm sehingga 5.84 μm. Imej TEM menganggarkan diameter karbon nanotiub dalam julat 3.38 nm sehingga 16.14 nm. Imej TEM turut mengesahkan kewujudan ZnO yang melekat di antara CNTs. Kombinasi ZnO dan SWCNTs di dalam filem nipis mencadangkan penggunaan kaedah CBD yang ringkas dan berkos murah untuk menghasilkan pelbagai struktur ZnO-CNTs bersaiz nanodengan ketebalan yang sesuai. Kata-kata kunci: zink oksida; karbon nanotiub; struktur bersaiz nano; filem nipis


Sign in / Sign up

Export Citation Format

Share Document