Anisotropy of Strain Relaxation in III-V Semiconductor Heterostructures

2004 ◽  
Vol 230-232 ◽  
pp. 93-100 ◽  
Author(s):  
O. Yastrubchak ◽  
T. Wosiński ◽  
J.Z. Domagała ◽  
E. Łusakowska

Partially relaxed III–V heterostructures: GaAs/InGaAs and InP/InAlAs/InGaAs, with a small lattice mismatch, grown using molecular beam epitaxy under compressive or tensile misfit stress at the (001) interface, have been investigated by means of high-resolution X-ray diffractometry, atomic force microscopy and generalized ellipsometry. Additionally, transmission electron microscopy and electron-beam induced current in a scanning electron microscope have been employed to reveal misfit dislocations at the heterostructure interface. Chemical etching was used to determine polarity of the crystals and threading dislocation densities in the epitaxial layers. Our findings are interpreted in terms of the dependent on growth conditions, material’s composition and doping glide velocities of two types of misfit dislocations: α and β, differing in their core structure and lying along two orthogonal 〈110〉 crystallographic directions at the (001) interface.

Author(s):  
W. Qian ◽  
M. Skowronski ◽  
R. Kaspi ◽  
M. De Graef

GaSb thin film grown on GaAs is a promising substrate for fabrication of electronic and optical devices such as infrared photodetectors. However, these two materials exhibit a 7.8% lattice constant mismatch which raises concerns about the amount of extended defects introduced during strain relaxation. It was found that, unlike small lattice mismatched systems such as InxGa1-xAs/GaAs or GexSi1-x/Si(100), the GaSb/GaAs interface consists of a quasi-periodic array of 90° misfit dislocations, and the threading dislocation density is low despite its large lattice mismatch. This paper reports on the initial stages of GaSb growth on GaAs(001) substrates by molecular beam epitaxy (MBE). In particular, we discuss the possible formation mechanism of misfit dislocations at the GaSb/GaAs(001) interface and the origin of threading dislocations in the GaSb epilayer.GaSb thin films with nominal thicknesses of 5 to 100 nm were grown on GaAs(001) by MBE at a growth rate of about 0.8 monolayers per second.


2000 ◽  
Vol 648 ◽  
Author(s):  
Morgan E. Ware ◽  
Robert J. Nemanich

AbstractThe 4% lattice mismatch between Si and Ge creates strain in epitaxial layers of SiGe alloys on Si, and this strain can manifest itself in the morphological structure of the surface of the epitaxial layer. This study explores the relationship of the evolution of the surface morphology of SiGe layers grown on a range of Si surface orientations. We have grown thin, strained and thick, relaxed layers of Si0.7Ge0.3 by solid source molecular beam epitaxy on substrates with surface normals rotated from [001] towards [111] by angles of θ = (0, 2, 4, 10, 22) degrees. The surface morphology was investigated by atomic force microscopy, which showed considerable ordering of surface features on relaxed samples. These features evolve from hut-like structures at 0 degrees to large mesa-like structures separated by pits and crevices at 22 degrees. The organization of these features is also shown to vary with the substrate orientation. Each surface has characteristic directions along which features are aligned, and these directions vary continuously with the angle of rotation of the substrate. Transmission electron microscopy confirmed that misfit dislocations had formed along those same directions. The state of relaxation of each layer is quantified by Raman spectroscopy in order to make a direct correlation between residual strain and surface morphology.


1999 ◽  
Vol 588 ◽  
Author(s):  
A. Cremades ◽  
M. Albrecht ◽  
J. M. Ulloa ◽  
J. Piqueras ◽  
H. P. Strunk ◽  
...  

AbstractA series of 100 nm thick InGaN films with In content up to 14% has been grown by MOVPE on SiC substrates. Optical characterization was carried out by means of reflectance spectrometry, photoluminescence and cathodoluminescence. Optical properties of the samples have been correlated with the microstructural properties measured by atomic force microscopy, transmission electron microscopy and X-ray diffraction data. Results indicate a dependence of the optical properties on the In content in the sample, as well as on the residual stress in the films induced by Indium incorporation. Part of the strain is reduced elastically by formation of pinholes which reach the InGaN/GaN interface, where first misfit dislocations are observed to form. Our results show that luminescence is directly correlated with the strain distribution in the layers. Pinholes are observed to act as nonradiative recombination sites for carriers, while strain relaxation around pinholes may enhance luminescence emission. We discuss the influence of strain with respect to In incorporation, the appearance of piezoelectric fields and effects due to strain induced band bending.


Author(s):  
B. Jahnen ◽  
M. Albrecht ◽  
W. Dorsch ◽  
S. Christiansen ◽  
H. P. Strunk ◽  
...  

We analyse by means of transmission electron microscopy (TEM) and atomic force microscopy (AFM) the strain relaxation mechanisms in InGaN layers on GaN as dependent on the In content. At the experimentally given thickness of 100 nm, the layers remain coherently strained, up to an In concentration of 14 %. We show that part of the strain is reduced elastically by formation of hexagonally facetted pinholes. First misfit dislocations are observed to form at pinholes that reach the InGaN/GaN interface. We discuss these results in the framework of the Matthews-Blakeslee model for the critical thickness considering the Peierls force for glide of threading dislocations in the different slip systems of the wurtzite lattice.


1995 ◽  
Vol 378 ◽  
Author(s):  
G. Kissinger ◽  
T. Morgenstern ◽  
G. Morgenstern ◽  
H. B. Erzgräber ◽  
H. Richter

AbstractStepwise equilibrated graded GexSii-x (x≤0.2) buffers with threading dislocation densities between 102 and 103 cm−2 on the whole area of 4 inch silicon wafers were grown and studied by transmission electron microscopy, defect etching, atomic force microscopy and photoluminescence spectroscopy.


1999 ◽  
Vol 594 ◽  
Author(s):  
M. E. Ware ◽  
R. J. Nemanich

AbstractThis study explores stress relaxation of epitaxial SiGe layers grown on Si substrates with unique orientations. The crystallographic orientations of the Si substrates used were off-axis from the (001) plane towards the (111) plane by angles, θ = 0, 10, and 22 degrees. We have grown 100nm thick Si(1−x) Ge(x) epitaxial layers with x=0.3 on the Si substrates to examine the relaxation process. The as-deposited films are metastable to the formation of strain relaxing misfit dislocations, and thermal annealing is used to obtain highly relaxed films for comparison. Raman spectroscopy has been used to measure the strain relaxation, and atomic force microscopy has been used to explore the development of surface morphology. The Raman scattering indicated that the strain in the as-deposited films is dependent on the substrate orientation with strained layers grown on Si with 0 and 22 degree orientations while highly relaxed films were grown on the 10 degree substrate. The surface morphology also differed for the substrate orientations. The 10 degree surface is relatively smooth with hut shaped structures oriented at predicted angles relative to the step edges.


2006 ◽  
Vol 527-529 ◽  
pp. 1513-1516
Author(s):  
J. Bai ◽  
X. Huang ◽  
Balaji Raghothamachar ◽  
Michael Dudley ◽  
B. Wagner ◽  
...  

Strain relaxation in the GaN/AlN/6H-SiC epitaxial system grown by vicinal surface epitaxy (VSE) is investigated and compared with that in on-axis epitaxy. High resolution x-ray diffraction (HRXRD) measurements show that GaN films grown by VSE have improved crystalline quality. High resolution transmission electron microscope (HRTEM) studies reveal that there are two types of misfit dislocations (MDs) at AlN/6H-SiC interfaces: 60˚ complete dislocations along <1120 > directions with Burgers vector 1/3<1120 > and 60˚ Shockley partials along <10 10 > directions with Burgers vector 1/3<10 10 >. The latter are usually geometrical partial misfit dislocations (GPMDs) that are dominant in VSE to accommodate the lattice mismatch and stacking sequence mismatch simultaneously. In VSE, it is the high-density GPMDs formed at the vicinal surface steps that facilitate rapid strain relaxation at the initial stage of deposition and hence lead to superior crystalline quality of the subsequently grown GaN films.


1996 ◽  
Vol 436 ◽  
Author(s):  
Cengiz S. Ozkan ◽  
William D. Nix ◽  
Huajian Gao

AbstractHeteroepitaxial Si1-xGex. thin films deposited on silicon substrates exhibit surface roughening via surface diffusion under the effect of a compressive stress which is caused by a lattice mismatch. In these films, surface roughening can take place in the form of ridges which can be aligned along <100> or <110> directions, depending on the film thickness. In this paper, we investigate this anisotropic dependence of surface roughening and present an analysis of it. We have studied the surface roughening behaviour of 18% Ge and 22% Ge thin films subjected to controlled annealing experiments. Transmission electron microscopy and atomic force microscopy have been used to study the morphology and microstructure of the surface ridges and the dislocations that form during annealing.


2005 ◽  
Vol 891 ◽  
Author(s):  
Junqing Q. Xie ◽  
J. W. Dong ◽  
A. Osinsky ◽  
P. P. Chow ◽  
Y. W. Heo ◽  
...  

ABSTRACTZnO thin films have been epitaxially grown on r-plane sapphire by RF-plasma-assisted molecular beam epitaxy. X-ray diffraction (XRD) and transmission electron microscopy (TEM) studies indicate that the epitaxial relationship between ZnO and r-plane sapphire is (1120)ZnO // (1102)sapphire and [0001]ZnO // [1101]sapphire. Atomic force microscopy measurements reveal islands extended along the sapphire [1101] direction. XRD omega rocking curves for the ZnO (1120) reflection measured either parallel or perpendicular to the island direction suggest the defect density anisotropy along these directions. Due to the small lattice mismatch along the ZnO [0001] direction, few misfit dislocations were observed at the ZnO/Al2O3 interface in the high-resolution cross-sectional TEM image with the zone axis along the ZnO [1100] direction.


2002 ◽  
Vol 16 (28n29) ◽  
pp. 4347-4351 ◽  
Author(s):  
H. PRESTING ◽  
J. KONLE ◽  
H. KIBBEL

Silicon solar cells with embedded germanium (Ge) layers deposited as 3-dimensional islands in the Stranski-Krastanov growth mode have been grown by molecular beam epitaxy (MBE) to enhance the efficiency of Si thin film solar cells. The Ge-layers increase the infrared absorption in the base of the cell to achieve higher photocurrent which should overcome the loss in the open circuit voltage due to incorporation of a smaller bandgap material in the heterostructure. Up to 75 layers of Ge, each about 8 monolayers (ML) thick, separated by Si-spacer layers (9-18nm) have been deposited at rather elevated temperatures (700°C) on a standard 10Ωcm p-type Si-substrate. Island densities of 1011 cm -2 have been achieved by use of antimony (Sb) as surfactant. Atomic force microscopy (AFM) and transmission electron microscopy (TEM) were used to characterize the growth of Ge-islands under variuos growth conditions. Photocurrent measurements exhibit a higher photo-response in the infrared regime but a lower open circuit voltage of the fabricated solar cells compared to a Si-reference cell.


Sign in / Sign up

Export Citation Format

Share Document