Methodology to Determine the Toughness of a Brittle Thin Film by Nanoindentation

2006 ◽  
Vol 914 ◽  
Author(s):  
Helene Brillet-Rouxel ◽  
Marc Verdier ◽  
Michel Dupeux ◽  
Muriel Braccini ◽  
Stéphane Orain

AbstractNanoindentation is the most convenient local technique for measuring elastic modulus, hardness, and fracture toughness of dielectric thin films. This approach is applied to bulk silicon and dielectric thin films (porous and non-porous) on silicon substrate. Reproducible stable cracks are generated from the edges of a cube corner indentor. The validity of theoretical model of use to estimate the toughness from cracks length has been checked on these reference cases. To calculate the toughness of thin film on Si substrate, we first established the loading range in which the cracks only affect the thin film without substrate damage. Several corrective terms have been introduced to the classical toughness estimation formula to take into account the proximity of the film/substrate interface and the residual stress pre-existing in the film. This approach is discussed by comparing experimental results obtained including these improvements to literature results.

2006 ◽  
Vol 45 ◽  
pp. 2351-2354
Author(s):  
Ji Won Choi ◽  
Chong Yun Kang ◽  
Jin Sang Kim ◽  
Seok Jin Yoon ◽  
Hyun Jai Kim ◽  
...  

The dielectric properties of (Ba,Sr)TiO3 (BSTO) and Zr doped BSTO thin films have been investigated to identify candidate thin film dielectric materials having low dielectric loss without degradation of the tunability by continuous composition spread (CCS) technique using off-axis rf magnetron sputtering. The optimized properties of BSTO thin films deposited on Pt/SiO2/Si substrate by CCS were dielectric loss 0.031, tunability 31.5, respectively. The optimized properties of Zr doped BSTO thin films deposited on Pt/SiO2/Si substrate by CCS were improved by dielectric loss 42%, FOM 68% at the same BSTO composition, respectively. To confirm the dielectric properties and compositions by CCS technique, Zr doped BSTO bulk ceramics were evaluated.


2002 ◽  
Vol 716 ◽  
Author(s):  
Joseph B. Vella ◽  
Alex A. Volinsky ◽  
Indira S. Adhihetty ◽  
N.V. Edwards ◽  
William W. Gerberich

AbstractThe capabilities of nanoindentation to characterize low-k organo silicate glass (OSG) thin films is explored as a relatively rapid and inexpensive metric of mechanical properties, adhesion strength, and fracture toughness. One method of decreasing the static dielectric constant of OSG interlayer dielectrics requires the introduction of porosity in the material which has a dramatic impact on its mechanical and toughness properties. Percolation theory is used to formulate a correlation between porosity and elastic modulus. Using cube corner diamond indentation and scratch testing fracture toughness calculations are also discussed.


2006 ◽  
Vol 21 (2) ◽  
pp. 505-511 ◽  
Author(s):  
Lili Hu ◽  
Junlan Wang ◽  
Zijian Li ◽  
Shuang Li ◽  
Yushan Yan

Nanoporous silica zeolite thin films are promising candidates for future generation low-dielectric constant (low-k) materials. During the integration with metal interconnects, residual stresses resulting from the packaging processes may cause the low-k thin films to fracture or delaminate from the substrates. To achieve high-quality low-k zeolite thin films, it is important to carefully evaluate their adhesion performance. In this paper, a previously reported laser spallation technique is modified to investigate the interfacial adhesion of zeolite thin film-Si substrate interfaces fabricated using three different methods: spin-on, seeded growth, and in situ growth. The experimental results reported here show that seeded growth generates films with the highest measured adhesion strength (801 ± 68 MPa), followed by the in situ growth (324 ± 17 MPa), then by the spin-on (111 ± 29 MPa). The influence of the deposition method on film–substrate adhesion is discussed. This is the first time that the interfacial strength of zeolite thin films-Si substrates has been quantitatively evaluated. This paper is of great significance for the future applications of low-k zeolite thin film materials.


2010 ◽  
Vol 17 (05n06) ◽  
pp. 445-449 ◽  
Author(s):  
SUHUA FAN ◽  
QUANDE CHE ◽  
FENGQING ZHANG

The (100)-oriented Ca0.4Sr0.6Bi4Ti4O15(C0.4S0.6BTi ) thin film was successfully prepared by a sol-gel method on Pt/Ti/SiO2/Si substrate. The orientation and formation of thin films under different annealing schedules were studied using XRD and SEM. XRD analysis indicated that (100)-oriented C0.4S0.6BTi thin film with degree of orientation of I(200)/I(119) = 1.60 was prepared by preannealing the film at 400°C for 3 min followed by rapid thermal annealing at 800°C for 5 min. SEM analysis further indicated that the (100)-oriented C0.4S0.6BTi thin film with a thickness of about 800 nm was mainly composed of equiaxed grains. The remanent polarization and coercive field of the film were 16.1 μC/cm2 and 85 kV/cm, respectively.


1999 ◽  
Vol 574 ◽  
Author(s):  
Norifumi Fujimura ◽  
Tamaki Shimura ◽  
Toshifumi Wakano ◽  
Atsushi Ashida ◽  
Taichiro Ito

AbstractWe propose the application of ZnO:X (X = Li, Mg, N, In, Al, Mn, Gd, Yb etc.) films for a monolithic Optical Integrated Circuit (OIC). Since ZnO exhibits excellent piezoelectric effect and has also electro-optic and nonlinear optic effects and the thin films are easily obtained, it has been studied as one of the important thin film wave guide materials especially for an acoustooptic device[1]. In terms of electro-optic and nonlinear optic effects, however, LiNbO3 or LiTaO3 is superior to ZnO. The most important issue of thin film waveguide using such ferroelectrics is optical losses at the film/substrate interface and the film surface, because the process window to control the surface morphology is very narrow due to their high deposition temperature. Since ZnO can be grown at extremely low temperature, the roughness at the surface and the interface is expected to be minimized. This is the absolute requirement especially for waveguide using a blue or ultraviolet laser. Recently, lasing at the wavelength of ultraviolet, ferroelectric and antiferromagnetic behaviors of ZnO doped with various exotic elements (exotic doping) have been reported. This paper discusses the OIC application of ZnO thin films doped with exotic elements.


1989 ◽  
Vol 169 ◽  
Author(s):  
K.M. Hubbard ◽  
P.N. Arendt ◽  
D.R. Brown ◽  
D.W. Cooke ◽  
N.E. Elliott ◽  
...  

AbstractThin films of the Tl‐based superconductors often have relatively poor properties because of film/substrate interdiffusion which occurs during the anneal. We have therefore investigated the use of BaF2 as a diffusion barrier. TICaBaCuO thin films were deposited by dc magnetron sputtering onto MgO <100> substrates, both with and without an evaporation‐deposited BaF2 buffer layer, and post‐annealed in a Tl over‐pressure. Electrical properties of the films were determined by four‐point probe analysis, and compositions were measured by ion‐backscattering spectroscopy. Structural analysis was performed by X‐ray diffraction and scanning electron microscopy. The BaF2 buffer layers were found to significantly improve the properties of the TICaBaCuO thin films.


Author(s):  
Mitul B. Modi ◽  
Suresh K. Sitaraman

Delamination of intrinsically or residually stressed thin films is commonly encountered in microelectronics and MEMS systems. Thin films typically accrue stresses through micro structural variations caused by physical vapor deposition, thermally induced stresses imposed due to thermal mismatch, and/or extrinsically introduced forces. These stresses can reach upwards of 1 GPa and can easily exceed the strength of the metal thin film interface. Knowledge of the interfacial fracture toughness (Γ) is necessary to predict if delamination will occur. However, measuring Γ is a challenge for thin film interfaces. Typical testing methods such as bimaterial cantilever, microscratch, peel, bulge, or edge lift-off are limited to organic films, cause complex stress fields, can only measure a single mode mix, or cannot achieve the large energy release rates typical of metal thin film interfaces. A new approach based on the decohesion test, called the modified decohesion test (MDT), eliminates these shortcomings of current testing methods. In this approach, a highly stressed super layer is used to drive delamination and “tune-in” the mode mix at the crack tip. Since the deformations remain elastic, a mechanics-based solution can be used to correlate test parameters to the energy release rate. Common IC fabrication techniques are used to prepare the sample and execute the test, thereby making the test compatible with current microelectronic or MEMS facilities. Varying the crack surface area rather than the energy in the super layer allows the ability to bound Γ using a single test wafer providing a 90% savings in resources and 95% savings in time. Other modifications allow application of the method to highly chemically reactive metals and decrease the sample preparation time. Design, preparation, and execution of the MDT are presented. Results of finite element models are used to validate the approach. Results are shown for a Ti/Al2O3 interface.


Catalysts ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 954
Author(s):  
Anna Cyza ◽  
Łukasz Cieniek ◽  
Tomasz Moskalewicz ◽  
Wojciech Maziarz ◽  
Jan Kusiński ◽  
...  

The aim of the presented investigations was to deposit the thin films La1−xSrxFeO3 (x = 0, 0.1, 0.2) on (100) Si substrate by using the Pulsed Laser Deposition (PLD) method. Structure was exanimated by using XRD, SEM, AFM, TEM and XPS methods. The catalytic properties were analyzed in 4 ppm acetone atmosphere. The doping of Sr thin films La1−xSrxFeO3 (x = 0, 0.1, 0.2) resulted in a decrease in the size of the crystallites, the volume of the elemental cell and change in the grain morphology. In the LaFeO3 and La0.9Sr0.1FeO3, clusters around which small grains grow are visible in the structure, while in the layer La0.8Sr0.2FeO3, the visible grains are elongated. The TEM analysis has shown that the obtained thin films had a thickness in the range 150–170 nm with triangular or flat column ends. The experiment performed in the presence of gases allowed us to conclude that the surfaces (101/020) in the triangle-shaped columns and the plane (121/200) faces in flat columns were exposed to gases. The best properties in the presence of CH3COCH3 gas were noted for LaFeO3 thin film with triangle columns ending with orientation (101/020).


2010 ◽  
Vol 77 (5) ◽  
pp. 803-818 ◽  
Author(s):  
Hiroyuki Hirakata ◽  
Takeshi Yamada ◽  
Yoshiki Nobuhara ◽  
Akio Yonezu ◽  
Kohji Minoshima

1971 ◽  
Vol 49 (12) ◽  
pp. 1606-1610 ◽  
Author(s):  
S. L. McBride ◽  
G. W. Farnell

The usefulness of the immersion–reflection technique for the measurement of the angular dependence of the dispersion curves for elastic surface waves in anisotropic thin-film, substrate combinations is demonstrated. The example chosen consists of gold films on a substrate of Y-cut lithium niobate, the latter being both highly anisotropic and piezoelectric. The velocity accuracy of the measurements is about ±0.3% and the frequency of operation is limited by the attenuation in the liquid medium in which the test specimen is immersed.


Sign in / Sign up

Export Citation Format

Share Document