Characterization of Atomic Layer Deposited Ultrathin HfO2 Film as a Diffusion Barrier in Cu Metallization

2007 ◽  
Vol 990 ◽  
Author(s):  
Prodyut Majumder ◽  
Rajesh Katamreddy ◽  
Christos G Takoudis

ABSTRACTThermally stable, amorphous HfO2 thin films deposited using atomic layer deposition have been studied as a diffusion barrier between Cu and the Si substrate. 4 nm thick as-deposited HfO2 films deposited on Si are characterized with X-ray photoelectron spectroscopy. Cu/HfO2/<Si> samples are annealed at different temperatures, starting from 500 °C, in the presence of N2 atmosphere for 5 min and characterized using sheet resistance, X-ray diffraction and scanning electron microscopy. Ultrathin HfO2 films are found to be effective diffusion barrier between Cu and Si with a high failure temperature of about 750 °C.

2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Anna Majtyka ◽  
Anna Nowak ◽  
Benoît Marchand ◽  
Dariusz Chrobak ◽  
Mikko Ritala ◽  
...  

The present paper pertains to mechanical properties and structure of nanocrystalline multiferroic BeFiO3(BFO) thin films, grown by atomic layer deposition (ALD) on the Si/SiO2/Pt substrate. The usage of sharp-tip-nanoindentation and multiple techniques of structure examination, namely, grazing incidence X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, and energy dispersive X-ray spectrometry, enabled us to detect changes in elastic properties(95 GPa≤E≤118 GPa)and hardness(4.50 GPa≤H≤7.96 GPa)of BFO after stages of annealing and observe their relation to the material’s structural evolution. Our experiments point towards an increase in structural homogeneity of the samples annealed for a longer time. To our best knowledge, the present report constitutes the first disclosure of nanoindentation mechanical characteristics of ALD-fabricated BeFiO3, providing a new insight into the phenomena that accompany structure formation and development of nanocrystalline multiferroics. We believe that our systematic characterization of the BFO layers carried out at consecutive stages of their deposition provides pertinent information which is needed to control and optimize its ALD fabrication.


2007 ◽  
Vol 22 (12) ◽  
pp. 3455-3464 ◽  
Author(s):  
Rajesh Katamreddy ◽  
Ronald Inman ◽  
Gregory Jursich ◽  
Axel Soulet ◽  
Christos Takoudis

Tetrakis-diethylamino hafnium (TDEAH), tris-diethylamino aluminum (TDEAA), and ozone were used for the atomic layer deposition (ALD) of HfO2, Al2O3, and HfAlOx films. The ALD rates were measured to be 1.1 Å/cycle for HfO2 and 1.3 Å/cycle for Al2O3. The ALD temperature windows were found to be between 200 and 325 °C for TDEAA, and between 200 and 275 °C for TDEAH. The overlap of these ALD windows between 200 and 275 °C is critical for ALD of the composite film, HfAlOx. In addition to the overlapping ALD temperature windows, the two metal precursors have similar thermal characteristics, as shown by TGA and differential scanning calorimetry. As-deposited films and films postannealed at 600 and 800 °C films were analyzed using Fourier transformed infrared (FTIR) spectroscopy, x-ray photoelectron spectroscopy, and x-ray diffraction (XRD) techniques. FTIR spectra revealed interfacial oxide growth during deposition of both HfO2 and Al2O3 whose thickness increased with annealing temperature. The FTIR data also indicated hydroxyl and nitrate groups in the films; these species were removed after annealing in Ar at a temperature of ⩾600 °C. Both FTIR and XRD results indicated the crystallization of pure HfO2 after annealing at temperatures as low as 600 °C. On the other hand, pure Al2O3 remained amorphous after annealing at temperatures up to 800 °C. XRD data of the composite HfAlOx film show that films deposited by alternating five cycles of HfO2 and one cycle of Al2O3 remained amorphous after annealing at 600 °C. Rutherford backscattering analysis of HfAlOx deposited with a varied number of alternating HfO2 and Al2O3 cycles demonstrated a strong correlation between the cyclic dosage of TDEAA and TDEAH and the film composition.


2002 ◽  
Vol 716 ◽  
Author(s):  
H. Kim ◽  
C. Cabral ◽  
C. Lavoie ◽  
S.M. Rossnagel

AbstractTa films were grown by plasma-enhanced atomic layer deposition (PE-ALD) at temperatures from room temperature up to 300 °C using TaCl5 as source gas and RF plasma-produced atomic H as the reducing agent. Post-deposition ex situ chemical analyses showed that the main impurity is oxygen, incorporated during the air exposure prior to analysis with typically low Cl concentration below 1 at %. The X-ray diffraction indicates that ALD Ta films are amorphous or composed of nano-grains. The typical resistivity of ALD Ta films was 150-180 μΩ cm, which corresponds to that of β-Ta phase, at a wide range of growth parameters. The conformality of the film is 100 % up to an aspect ratio of 15:1 and 40 % for aspect ratio of 40:1. The thickness per cycle, corresponding to the growth rate, was measured by Rutherford back scattering as a function of various key growth parameters, including TaCl5 and H exposure time and growth temperature. The maximum thickness per cycle values were below 0.1 ML, probably due to the steric hindrance for TaCl5 adsorption. Bilayer structures consisting of Cu films deposited by sputtering and ALD Ta films with various thicknesses were prepared and the diffusion barrier properties of ALD Ta films were investigated by various analysis techniques consisting of X-ray diffraction, elastic light scattering, and resistance analysis. The results were compared with Ta thin films deposited by sputtering with comparable thicknesses. Also, the growth of TaN films by PE-ALD using consecutive exposures of atomic H and activated N2 is presented.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mabel Moreno ◽  
Miryam Arredondo ◽  
Quentin M. Ramasse ◽  
Matthew McLaren ◽  
Philine Stötzner ◽  
...  

AbstractIn this contribution, we explore the potential of atomic layer deposition (ALD) techniques for developing new semiconductor metal oxide composites. Specifically, we investigate the functionalization of multi-wall trititanate nanotubes, H2Ti3O7 NTs (sample T1) with zinc oxide employing two different ALD approaches: vapor phase metalation (VPM) using diethylzinc (Zn(C2H5)2, DEZ) as a unique ALD precursor, and multiple pulsed vapor phase infiltration (MPI) using DEZ and water as precursors. We obtained two different types of tubular H2Ti3O7 species containing ZnO in their structures. Multi-wall trititanate nanotubes with ZnO intercalated inside the tube wall sheets were the main products from the VPM infiltration (sample T2). On the other hand, MPI (sample T3) principally leads to single-wall nanotubes with a ZnO hierarchical bi-modal functionalization, thin film coating, and surface decorated with ZnO particles. The products were mainly characterized by electron microscopy, energy dispersive X-ray, powder X-ray diffraction, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. An initial evaluation of the optical characteristics of the products demonstrated that they behaved as semiconductors. The IR study revealed the role of water, endogenous and/or exogenous, in determining the structure and properties of the products. The results confirm that ALD is a versatile tool, promising for developing tailor-made semiconductor materials.


1995 ◽  
Vol 402 ◽  
Author(s):  
G. Sade ◽  
J. Pelleg

AbstractBilayer of TiB2/TiSi2 was deposited by magnetron co-sputtering on silicon and alumina substrates, and this structure was investigated for structural and electrical properties. Substrate bias and annealing in vacuum have been applied to vary the film properties. X-ray diffraction (XRD) and cross-sectional transmission electron microscopy (XTEM) were used to characterize the structure, and chemical composition was characterized by Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS). Resistivity was measured by four probe method. Diffusion barrier properties were studied by AES. As deposited films are amorphous with resistivities of about 40 μΩcm. Post deposition annealing in vacuum shows that the amorphous titanium boride film is very stable. Crystallization starts above 1000°C as seen by XRD, and the crystallization temperature depends on the thickness of TiB2. TiSi2 C54 forms in the temperature range 586°C - 922°C, when TiB2 still remains in amorphous form. The TiSi2 sublayer serves as an additional effective diffusion barrier, preventing outdiffusion of boron from TiB2 into the Si substrate.


2018 ◽  
Vol 32 (19) ◽  
pp. 1840074 ◽  
Author(s):  
Viral Barhate ◽  
Khushabu Agrawal ◽  
Vilas Patil ◽  
Sumit Patil ◽  
Ashok Mahajan

The spectroscopic study of La2O3 thin films deposited over Si and SiC at low RF power of 25 W by using indigenously developed plasma-enhanced atomic layer deposition (IDPEALD) system has been investigated. The tris (cyclopentadienyl) lanthanum (III) and O2 plasma were used as a source precursor of lanthanum and oxygen, respectively. The [Formula: see text]1.2 nm thick La2O3 over SiC and Si has been formed based on our recipe confirmed by means of cross-sectional transmission electron microscopy. The structural characterization of deposited films was performed by means of X-ray photoelectron Spectroscopy (XPS) and X-ray Diffraction (XRD). The XPS result confirms the formation of 3[Formula: see text] oxidation state of the lanthania. The XRD results reveals that, deposited La2O3 films deposited on SiC are amorphous in nature compare to that of films on Si. The AFM micrograph shows the lowest roughness of 0.26 nm for 30 cycles of La2O3 thin films.


2016 ◽  
Vol 316 ◽  
pp. 160-169 ◽  
Author(s):  
Nicholas David Schuppert ◽  
Santanu Mukherjee ◽  
Alex M. Bates ◽  
Eun-Jin Son ◽  
Moon Jong Choi ◽  
...  

2003 ◽  
Vol 766 ◽  
Author(s):  
Degang Cheng ◽  
Eric T. Eisenbraun

AbstractA plasma-enhanced atomic layer deposition (PEALD) process for the growth of tantalumbased compounds is employed in integration studies for advanced copper metallization on a 200- mm wafer cluster tool platform. This process employs terbutylimido tris(diethylamido)tantalum (TBTDET) as precursor and hydrogen plasma as the reducing agent at a temperature of 250°C. Auger electron spectrometry, X-ray photoelectron spectrometry, and X-ray diffraction analyses indicate that the deposited films are carbide rich, and possess electrical resistivity as low as 250νΔcm, significantly lower than that of tantalum nitride deposited by conventional ALD or CVD using TBTDET and ammonia. PEALD Ta(C)N also possesses a strong resistance to oxidation, and possesses diffusion barrier properties superior to those of thermally grown TaN.


Molecules ◽  
2020 ◽  
Vol 25 (21) ◽  
pp. 5043
Author(s):  
Chia-Hsun Hsu ◽  
Xin-Peng Geng ◽  
Wan-Yu Wu ◽  
Ming-Jie Zhao ◽  
Xiao-Ying Zhang ◽  
...  

In this study, aluminum-doped zinc oxide (Al:ZnO) thin films were grown by high-speed atmospheric atomic layer deposition (AALD), and the effects of air annealing on film properties are investigated. The experimental results show that the thermal annealing can significantly reduce the amount of oxygen vacancies defects as evidenced by X-ray photoelectron spectroscopy spectra due to the in-diffusion of oxygen from air to the films. As shown by X-ray diffraction, the annealing repairs the crystalline structure and releases the stress. The absorption coefficient of the films increases with the annealing temperature due to the increased density. The annealing temperature reaching 600 °C leads to relatively significant changes in grain size and band gap. From the results of band gap and Hall-effect measurements, the annealing temperature lower than 600 °C reduces the oxygen vacancies defects acting as shallow donors, while it is suspected that the annealing temperature higher than 600 °C can further remove the oxygen defects introduced mid-gap states.


Sign in / Sign up

Export Citation Format

Share Document