Recrystallization Characteristics of Amorphous Si

1988 ◽  
Vol 100 ◽  
Author(s):  
Rodney A. Herring ◽  
Eric M. Fiore

ABSTRACTThe microstructure of high-energy (0.5–6.0 MEV) As-ion implanted Si and rapid thermal annnealed (RTA'd) Si has been studied by transmission electron microscopy (TEM). The implantations formed buried amorphous layers that recrystallized during RTA at different temperatures and became either single crystal or polycrystalline depending on their implation energy and fluence. At energies > 2.5 MeV and fluences < 1015 cm−2, recrystallization occurred below 400°C and regowth was single crystal. At an energy of 6 MeV and fluence of 5 × 1015 cm−2 recrystallization occurred above 600°C and regrowth was polycrystalline. When the implantation energy and fluence were reduced to 0.5 MeV and 2 × 1014 cm−2, respectively, recrystallization occurred above 600°C and regrowth was polycrystalline. The above results are explained by both the formation mechanisms of amorphous Si resulting from ion implantation and the structural order of a-Si.

1996 ◽  
Vol 441 ◽  
Author(s):  
J. Marien ◽  
T. Wagner ◽  
M. Rühle

AbstractThin Nb films were grown by MBE in a UHV chamber at two different temperatures (50°C and 950°C) on the (110) surface of TiO2 (rutile).At a growth temperature of 50°C, reflection high energy electron diffraction (RHEED) revealed epitaxial growth of Nb on rutile: (110)[001] TiO2 ¦¦ (100)[001] Nb. In addition, investigations with Auger electron spectroscopy (AES) revealed that a chemical reaction took place between the Nb overlayer and the TiO2 substrate at the initial growth stage. A 2 nm thick reaction layer at the Nb/TiO2 interface has been identified by means of conventional transmission electron microscopy (CTEM) and high-resolution transmission electron microscopy (HRTEM).At a substrate temperature of 950°C, during growth, the Nb film was oxidized completely, and NbO2 grew epitaxially on TiO2. The structure and the chemical composition of the overlayers have been investigated by RHEED, AES, CTEM and HRTEM. Furthermore, it was determined that the reaction of Nb with TiO2 is governed by the defect structure of the TiO2 and the relative oxygen affinities of Nb and TiO2.


1985 ◽  
Vol 54 ◽  
Author(s):  
L. R. Zheng ◽  
L. S. Hung ◽  
J. W. Mayer

ABSTRACTInteractions of evaporated Ni and Si thin films were investigated by a combination of backseat tering spectrometry and transmission electron microscopy. The presence of amorphous Si has no significant effects on Ni2Si and NiSi formation, but it drastically lowers the formation temperature of NiSi. Experiments with evaporated thin markers established that Ni is the dominant diffusing species in the growth of the three suicides. The stability of NiSi was examined by sequential evaporation of Ni34Si66 and Ni50Si50 thin films both on Si(100) and on evaporated Si substrates. The results showed that NiSi2 grows at the expence of NiSi when the stucture is in contact with evaporated Si, while it dissociates into NiSi and Si when in contact with single crystal Si.


1983 ◽  
Vol 25 ◽  
Author(s):  
H. Yamamoto ◽  
H. Ishiwara ◽  
S. Furukawa ◽  
M. Tamura ◽  
T. Tokuyama

ABSTRACTLateral solid phase epitaxy (L-SPE) of amorphous Si (a-Si) films vacuum-evaporated on Si substrates with SiO2 patterns has been investigated, in which the film first grows vertically in the regions directly contacted to the Si substrates and then grows laterally onto SiO2 patterns. It has been found from transmission electron microscopy and Nomarski optical microscopy that use of dense a-Si films, which are formed by evaporation on heated substrates and subsequent amorphization by Si+ ion implantation, is essentially important for L-SPE. The maximum L-SPE length of 5–6μm was obtained along the <010> direction after 10hourannealing at 600°C. The kinetics of the L-SPE growth has also been investigated.


1992 ◽  
Vol 279 ◽  
Author(s):  
R. Jebasinski ◽  
S. Mantl ◽  
Chr. Dieker ◽  
H. Dederichs ◽  
L. Vescan ◽  
...  

ABSTRACTSynthesis of buried, epitaxial CoSi2 layers in Si1−xGex alloys (x =0.48 and x = 0.09) by 100 and 150 keV Co+ ion implantation and subsequent rapid thermal annealing was studied by X-Ray diffraction, Rutherford backscattering spectroscopy, He ion channeling, Auger Eectron Spectroscopy and Transmission Electron Microscopy. Buried single-crystal CoSi2 layers in the Si0.91Ge0.09 alloy containing ≈ 1 at% Ge were formed. The suicide formation causes an outdiffusion of Ge leading to an increase in the Ge concentration of the adjacent SiGe layers. In contrast, in the Si0.52Ge0.48 alloy no buried suicide layers could be produced.


Author(s):  
Joseph J. Comer ◽  
Charles Bergeron ◽  
Lester F. Lowe

Using a Van De Graaff Accelerator thinned specimens were subjected to bombardment by 3 MeV N+ ions to fluences ranging from 4x1013 to 2x1016 ions/cm2. They were then examined by transmission electron microscopy and reflection electron diffraction using a 100 KV electron beam.At the lowest fluence of 4x1013 ions/cm2 diffraction patterns of the specimens contained Kikuchi lines which appeared somewhat broader and more diffuse than those obtained on unirradiated material. No damage could be detected by transmission electron microscopy in unannealed specimens. However, Dauphiné twinning was particularly pronounced after heating to 665°C for one hour and cooling to room temperature. The twins, seen in Fig. 1, were often less than .25 μm in size, smaller than those formed in unirradiated material and present in greater number. The results are in agreement with earlier observations on the effect of electron beam damage on Dauphiné twinning.


Author(s):  
D. Loretto ◽  
J. M. Gibson ◽  
S. M. Yalisove

The silicides CoSi2 and NiSi2 are both metallic with the fee flourite structure and lattice constants which are close to silicon (1.2% and 0.6% smaller at room temperature respectively) Consequently epitaxial cobalt and nickel disilicide can be grown on silicon. If these layers are formed by ultra high vacuum (UHV) deposition (also known as molecular beam epitaxy or MBE) their thickness can be controlled to within a few monolayers. Such ultrathin metal/silicon systems have many potential applications: for example electronic devices based on ballistic transport. They also provide a model system to study the properties of heterointerfaces. In this work we will discuss results obtained using in situ and ex situ transmission electron microscopy (TEM).In situ TEM is suited to the study of MBE growth for several reasons. It offers high spatial resolution and the ability to penetrate many monolayers of material. This is in contrast to the techniques which are usually employed for in situ measurements in MBE, for example low energy electron diffraction (LEED) and reflection high energy electron diffraction (RHEED), which are both sensitive to only a few monolayers at the surface.


Author(s):  
L. Hultman ◽  
C.-H. Choi ◽  
R. Kaspi ◽  
R. Ai ◽  
S.A. Barnett

III-V semiconductor films nucleate by the Stranski-Krastanov (SK) mechanism on Si substrates. Many of the extended defects present in the films are believed to result from the island formation and coalescence stage of SK growth. We have recently shown that low (-30 eV) energy, high flux (4 ions per deposited atom), Ar ion irradiation during nucleation of III-V semiconductors on Si substrates prolongs the 1ayer-by-layer stage of SK nucleation, leading to a decrease in extended defect densities. Furthermore, the epitaxial temperature was reduced by >100°C due to ion irradiation. The effect of ion bombardment on the nucleation mechanism was explained as being due to ion-induced dissociation of three-dimensional islands and ion-enhanced surface diffusion.For the case of InAs grown at 380°C on Si(100) (11% lattice mismatch), where island formation is expected after ≤ 1 monolayer (ML) during molecular beam epitaxy (MBE), in-situ reflection high-energy electron diffraction (RHEED) showed that 28 eV Ar ion irradiation prolonged the layer-by-layer stage of SK nucleation up to 10 ML. Otherion energies maintained layer-by-layer growth to lesser thicknesses. The ion-induced change in nucleation mechanism resulted in smoother surfaces and improved the crystalline perfection of thicker films as shown by transmission electron microscopy and X-ray rocking curve studies.


1999 ◽  
Vol 557 ◽  
Author(s):  
J. Yamasaki ◽  
S. Takeda

AbstractThe structural properties of the amorphous Si (a-Si), which was created from crystalline silicon by 2 MeV electron irradiation at low temperatures about 25 K, are examined in detail by means of transmission electron microscopy and transmission electron diffraction. The peak positions in the radial distribution function (RDF) of the a-Si correspond well to those of a-Si fabricated by other techniques. The electron-irradiation-induced a-Si returns to crystalline Si after annealing at 550°C.


Sign in / Sign up

Export Citation Format

Share Document