Chemical Beam Epitaxy of III-V Semiconductor Heterostructures

1987 ◽  
Vol 102 ◽  
Author(s):  
W. T. Tsang

ABSTRACTThis paper reviews briefly some of the recent progress in chemical beam epitaxy (CBE) for the preparation of GaInAs(P)/InP and GaAs/AlGaAs quantum wells, superlattices, and heterostructure devices. Chemical beam epitaxy can be viewed as a chemical vapor deposition process but with the pressure inside the growth chamber sufficient, ow (< 10-4 torr) so that the transport of the gaseous reactants becomes molecular beam instead of via viscous flow. This not only eliminates the complicated gas phase reactions and the stagnant boundary layer above the substrate through which the reactants have to diffuse, but also allows for quick transitions of material compositions and dopings as those achievable by molecular beam epitaxy (MBE). For the growth of HI-V semiconductors, the group Inl elements are derived by the pyrolysis of organometallics (or inorganometallics such as dopant gases) on the heated substrate surface, while the group V elements are derived by the thermal decomposition of hydrides using a high temperature cracker. For the growth of group IV semiconductors, beams of inorganometallic compounds are used. Thus, both organometallic and inorganometallic compounds can be used as starting sources. There are two other alternatives: the gas source MBE (GSMBE), which uses group III elements evaporated from solid sources as in MBE and thermally decomposed hydrides, and the metalorganic MBE (MOMBE), which uses metalorganics as group III sources and group V elements evaporated from solid sources as in MBE. These other processes will not be reviewed here. Introd

2003 ◽  
Vol 799 ◽  
Author(s):  
Haruki Yokoyama ◽  
Hiroki Sugiyama ◽  
Yasuhiro Oda ◽  
Michio Sato ◽  
Noriyuki Watanabe ◽  
...  

ABSTRACTThis paper studies the decomposition characteristic of group-III sources during InAlAsSb growth on InP substrates by metalorganic chemical vapor deposition (MOCVD) using trimethylindium (TMI), trimethylaluminum (TMA), trimethylantimony (TMSb) and arsine (AsH3). A composition analysis of InAlAsSb layers shows that the group-III compositions in the InAlAsSb layer change remarkably when the flow rate of the group-V source is varied. To clarify the reason for this phenomenon, the growth rates of InAsSb and AlAsSb component are examined. Their changes indicate that TMSb suppresses the decomposition of TMA while AsH3 enhances it. Moreover, the HEMT structure with InP/InAlAsSb Schottky barrier layer, whose InP layer acts as a recess-etch-stop layer, is fabricated for the first time. The I-V characteristics of a fabricated Schottky barrier diode indicate that the reverse leakage current of InP/InAlAsSb is about one order of magnitude smaller than that of commonly used InP/InAlAs.


1999 ◽  
Vol 4 (S1) ◽  
pp. 858-863
Author(s):  
Huajie Chen ◽  
A. R. Smith ◽  
R. M. Feenstra ◽  
D. W. Greve ◽  
J. E. Northrup

InGaN alloys with indium compositions ranging from 0–40% have been grown by molecular beam epitaxy. The dependence of the indium incorporation on growth temperature and group III/group V ratio has been studied. Scanning tunneling microscopy images, interpreted using first-principles theoretical computations, show that there is strong indium surface segregation on InGaN. Based on this surface segregation, a qualitative model is proposed to explain the observed indium incorporation dependence on the growth parameters.


MRS Bulletin ◽  
1989 ◽  
Vol 14 (10) ◽  
pp. 48-53 ◽  
Author(s):  
J.V. Mantese ◽  
A.L. Micheli ◽  
A.H. Hamdi ◽  
R.W. Vest

There are many methods of depositing thin film materials: thermal evaporation, sputtering, electron or laser beam evaporation, chemical vapor deposition (CVD), and molecular beam epitaxy (MBE). A good survey of many of the deposition methods appears in the 1988 November and December issues of the MRS BULLETIN. One method not included in that survey, however, is metalorganic deposition (MOD), a powerful method for depositing a variety of materials.Metalorganic deposition is not to be confused with metalorganic chemical vapor deposition (MOCVD), which is a gaseous deposition method. MOD is a nonvacuum, liquid-based, spin-on method of depositing thin films. A suitable organic precursor, dissolved in solution, is dispensed onto a substrate much like photoresist. The substrate is spun at a few thousand revolutions per minute, removing the excess fluid, driving off the solvent, and uniformly coating the substrate surface with an organic film a few microns thick. The soft metalorganic film is then pyrolyzed in air, oxygen, nitrogen, or other suitable atmosphere to convert the metalorganic precursors to their constituent elements, oxides, or other compounds. Figure 1 shows a schematic of the deposition process including a prebake and annealing (if necessary).


1991 ◽  
Vol 222 ◽  
Author(s):  
B. W. Liang ◽  
H. Q. Hou ◽  
C. W. Tu

ABSTRACTA simple kinetic model has been developed to explain the agreement between in situ and ex situ determination of phosphorus composition in GaAs1−xPx (x < 0.4) epilayers grown on GaAs (001) by gas-source molecular-beam epitaxy (GSMBE). The in situ determination is by monitoring the intensity oscillations of reflection high-energy-electron diffraction during group-V-limited growth, and the ex situ determination is by x-ray rocking curve measurement of GaAs1−xPx/GaAs strained-layer superlattices grown under group-III-limited growth condition.


1996 ◽  
Vol 450 ◽  
Author(s):  
Joseph Micallef ◽  
James L. Borg ◽  
Wai-Chee Shiu

ABSTRACTTheoretical results are presented showing how quantum well disordering affects the TE and TM absorption coefficient spectra of In0.53Ga0.47As/InP single quantum wells. An error function distribution is used to model the constituent atom composition after interdiffusion. Different interdiffusion rates on the group V and group III sublattices are considered resulting in a strained structure. With a suitable interdiffusion process the heavy hole and light hole ground state, excitonic transition energies merge and the absorption coefficient spectra near the fundamental absorption edge become polarization insensitive. The results also show that this polarization insensitivity can persist with the application of an electric field, which is of considerable interest in waveguide modulators.


1992 ◽  
Vol 281 ◽  
Author(s):  
F. G. Johnson ◽  
G. W. Wicks ◽  
R. E. Viturro ◽  
R. Laforce

ABSTRACTWe report on the first growth of GaAs/Ga0.5In0.5P heterostructures by conventional molecular beam epitaxy using solid-source valved crackers to supply both the arsenic and the phosphorus fluxes. By regulating the group V fluxes with the cracker needle valves, arsenide-phosphide heterostructures were successfully grown with virtually no group V intermixing between layers. For comparison, similar heterostructure samples were grown using only the mechanical shutters to switch between group V fluxes, and the resulting layers were severely intermixed. The amount of group V intermixing was shown to be independent of whether As2 or As4 fluxes were used to grow the layers. A GaAs/Ga0.5In0.5P multiple quantum well sample was also grown using the valved crackers. Photoluminescence peaks were clearly observed from 40 Å, 80 Å, and 300 Å GaAs quantum wells, but no luminescence was detected from a 20 Å well. An 80Å GaAs/ 80Å Ga0.5In0.5P superlattice was grown, and superlattice satellite peaks were observed in the X-ray rocking curves. The appearance of misfit dislocations suggests localized intermixing at the interfaces.


2002 ◽  
Vol 743 ◽  
Author(s):  
A. M. Sanchez ◽  
P. Ruterana ◽  
S. Kret ◽  
P. Dłużewski ◽  
G. Maciejewski ◽  
...  

ABSTRACTQuantitative analysis of high resolution electron microscopy image has been carried out to measure the indium distribution inside InGaN/GaN quantum well. The analyzed samples were nominally grown with 15% indium composition by molecular beam epitaxy with interruptions during the InxGa1-xN layer growth. The strain distribution is not homogeneous inside the quantum wells, and indium rich clusters can be observed. Areas with almost no indium concentration were observed corresponding to the growth interruption. A comparison with samples grown by metalorganic chemical vapor deposition is attempted.


Sign in / Sign up

Export Citation Format

Share Document