Atomic-Scale Segregation and Fluctuations in Chemical Ordering FePt Thin Films

2007 ◽  
Vol 1032 ◽  
Author(s):  
Karen L Torres ◽  
Chandan Srivastava ◽  
Richard L Martens ◽  
Gregory B Thompson

AbstractA series of atom probe and transmission electron microscopy (TEM) studies have been performed to quantify minute compositional fluctuations in Fe55Pt45 thin films during the A1 to L10 phase transformation. The atom probe specimens were analyzed in an Imago Local Electrode Atom Probe (LEAP®) at a target evaporation of 0.5%, a pulse fraction of 20% and a temperature of 120K. We noted a propensity of fracture failures in the LEAP with this material at lower temperatures. The atom probe reconstruction showed small levels of Pt segregation at grain boundaries in the as-deposited films. Fresnel-contrast TEM imaging confirmed high density fluctuations in these boundaries. Upon annealing at 600°C for 10 minutes, the film transformed from A1 to L10 and the grain boundaries become Fe enriched as compared to the as-deposited film.

Author(s):  
J. L. Lee ◽  
C. A. Weiss ◽  
R. A. Buhrman ◽  
J. Silcox

BaF2 thin films are being investigated as candidates for use in YBa2Cu3O7-x (YBCO) / BaF2 thin film multilayer systems, given the favorable dielectric properties of BaF2. In this study, the microstructural and chemical compatibility of BaF2 thin films with YBCO thin films is examined using transmission electron microscopy and microanalysis. The specimen was prepared by using laser ablation to first deposit an approximately 2500 Å thick (0 0 1) YBCO thin film onto a (0 0 1) MgO substrate. An approximately 7500 Å thick (0 0 1) BaF2 thin film was subsequendy thermally evaporated onto the YBCO film.Images from a VG HB501A UHV scanning transmission electron microscope (STEM) operating at 100 kV show that the thickness of the BaF2 film is rather uniform, with the BaF2/YBCO interface being quite flat. Relatively few intrinsic defects, such as hillocks and depressions, were evident in the BaF2 film. Moreover, the hillocks and depressions appear to be faceted along {111} planes, suggesting that the surface is smooth and well-ordered on an atomic scale and that an island growth mechanism is involved in the evolution of the BaF2 film.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3191
Author(s):  
Arun Kumar Mukhopadhyay ◽  
Avishek Roy ◽  
Gourab Bhattacharjee ◽  
Sadhan Chandra Das ◽  
Abhijit Majumdar ◽  
...  

We report the surface stoichiometry of Tix-CuyNz thin film as a function of film depth. Films are deposited by high power impulse (HiPIMS) and DC magnetron sputtering (DCMS). The composition of Ti, Cu, and N in the deposited film is investigated by X-ray photoelectron spectroscopy (XPS). At a larger depth, the relative composition of Cu and Ti in the film is increased compared to the surface. The amount of adventitious carbon which is present on the film surface strongly decreases with film depth. Deposited films also contain a significant amount of oxygen whose origin is not fully clear. Grazing incidence X-ray diffraction (GIXD) shows a Cu3N phase on the surface, while transmission electron microscopy (TEM) indicates a polycrystalline structure and the presence of a Ti3CuN phase.


2015 ◽  
Vol 21 (S3) ◽  
pp. 1315-1316 ◽  
Author(s):  
Mukesh Bachhav ◽  
Yan Dong ◽  
Philip Skemer ◽  
Emmanuelle A. Marquis

2013 ◽  
Vol 829 ◽  
pp. 917-921
Author(s):  
Saber Ghannadi ◽  
Hossein Abdizadeh ◽  
Mohammad Reza Golobostanfard

Titania thin films were prepared by electrophoretic deposition at various deposition times (1, 5 and 10 min) in constant applied potential (5 V). For this purpose, modified titania sol was prepared as a colloidal suspension. The influence of deposition time on the thickness and optical properties of titania films was investigated. Scanning electron microscope images illustrate compact and homogeneous titania films deposited on FTO substrates. The results show that the film thickness increases with increasing the deposition time. It could be inferred from UV-Vis spectroscopy that increasing the thickness of deposited film causes higher absorbance at UV region. Also, increasing the deposition time from 1 to 5 min leads to increase in optical band gap of the deposited films.


2021 ◽  
Vol 9 ◽  
Author(s):  
Jenna L. Wardini ◽  
Hasti Vahidi ◽  
Huiming Guo ◽  
William J. Bowman

Transmission electron microscopy (TEM), and its counterpart, scanning TEM (STEM), are powerful materials characterization tools capable of probing crystal structure, composition, charge distribution, electronic structure, and bonding down to the atomic scale. Recent (S)TEM instrumentation developments such as electron beam aberration-correction as well as faster and more efficient signal detection systems have given rise to new and more powerful experimental methods, some of which (e.g., 4D-STEM, spectrum-imaging, in situ/operando (S)TEM)) facilitate the capture of high-dimensional datasets that contain spatially-resolved structural, spectroscopic, time- and/or stimulus-dependent information across the sub-angstrom to several micrometer length scale. Thus, through the variety of analysis methods available in the modern (S)TEM and its continual development towards high-dimensional data capture, it is well-suited to the challenge of characterizing isometric mixed-metal oxides such as pyrochlores, fluorites, and other complex oxides that reside on a continuum of chemical and spatial ordering. In this review, we present a suite of imaging and diffraction (S)TEM techniques that are uniquely suited to probe the many types, length-scales, and degrees of disorder in complex oxides, with a focus on disorder common to pyrochlores, fluorites and the expansive library of intermediate structures they may adopt. The application of these techniques to various complex oxides will be reviewed to demonstrate their capabilities and limitations in resolving the continuum of structural and chemical ordering in these systems.


2012 ◽  
Vol 60 (1) ◽  
pp. 137-140 ◽  
Author(s):  
RI Chowdhury ◽  
MS Islam ◽  
F Sabeth ◽  
G Mustafa ◽  
SFU Farhad ◽  
...  

Cadmium selenide (CdSe) thin films have been deposited on glass/conducting glass substrates using low-cost electrodeposition method. X-ray diffraction (XRD) technique has been used to identify the phases present in the deposited films and observed that the deposited films are mainly consisting of CdSe phases. The photoelectrochemical (PEC) cell measurements indicate that the CdSe films are n-type in electrical conduction, and optical absorption measurements show that the bandgap for as-deposited film is estimated to be 2.1 eV. Upon heat treatment at 723 K for 30 min in air the band gap of CdSe film is decreased to 1.8 eV. The surface morphology of the deposited films has been characterized using scanning electron microscopy (SEM) and observed that very homogeneous and uniform CdSe film is grown onto FTO/glass substrate. The aim of this work is to use n-type CdSe window materials in CdTe based solar cell structures. The results will be presented in this paper in the light of observed data.DOI: http://dx.doi.org/10.3329/dujs.v60i1.10352  Dhaka Univ. J. Sci. 60(1): 137-140 2012 (January)


1989 ◽  
Vol 169 ◽  
Author(s):  
D. H. Shin ◽  
J. Silcox ◽  
S. E. Russek ◽  
D. K. Lathrop ◽  
R. A. Buhrman

AbstractGrain boundaries in thin films of high Tc YBa2Cu3O7-x superconductors have been investigated with high resolution scanning transmission electron microscope (STEM) imaging and nanoprobe energy dispersive x-ray (EDX) analysis. Atomic resolution images indicate that the grain boundaries are mostly clean, i.e., free of a boundary layer of different phase or of segregation, and are often coherent. EDX microanalysis with a 10 Å spatial resolution also indicates no composition deviation at the grain boundaries.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
M. Klimenkov ◽  
P. Vladimirov ◽  
U. Jäntsch ◽  
V. Kuksenko ◽  
R. Rolli ◽  
...  

Abstract The microstructural response of beryllium after neutron irradiation at various temperatures (643–923 K) was systematically studied using analytical transmission electron microscope that together with outcomes from advanced atomistic modelling provides new insights in the mechanisms of microstructural changes in this material. The most prominent feature of microstructural modification is the formation of gas bubbles, which is revealed at all studied irradiation temperatures. Except for the lowest irradiation temperature, gas bubbles have the shape of thin hexagonal prisms with average height and diameter increasing with temperature. A high number density of small bubbles is observed within grains, while significantly larger bubbles are formed along high-angle grain boundaries (GB). Denuded zones (DZ) nearly free from bubbles are found along both high- and low-angle grain boundaries. Precipitations of secondary phases (mainly intermetallic Al-Fe-Be) were observed inside grains, along dislocation lines and at GBs. EDX analysis has revealed homogeneous segregation of chromium and iron along GBs. The observed features are discussed with respect to the available atomistic modelling results. In particular, we present a plausible reasoning for the abundant formation of gas bubbles on intermetallic precipitates, observation of various thickness of zones denuded in gas bubbles and precipitates, and their relation to the atomic scale diffusion mechanisms of solute-vacancy clusters.


1999 ◽  
Vol 581 ◽  
Author(s):  
Matthias Abraham ◽  
Mattias Thuvandert ◽  
Helen M. Lane ◽  
Alfred Cerezo ◽  
George D.W. Smith

ABSTRACTNanocrystalline Ni-P alloys produced by electrodeposition have been characterised by three-dimensional atom probe (3DAP) analysis. In the as-deposited materials, there are indications of some variation in P concentration between grains and segregation to grain boundaries. After heat treatment however, strong grain boundary segregation and the formation of Ni3P precipitates have been observed.


Sign in / Sign up

Export Citation Format

Share Document