Persistent Photocurrent in InP Nanowires Heteroepitaxially Bridged Between Single Crystal Si Surfaces

2008 ◽  
Vol 1080 ◽  
Author(s):  
Ataur Sarkar ◽  
M. Saif Islam ◽  
Sungsoo Yi ◽  
A. Alec Talin

ABSTRACTRoom temperature photoelectrical characterization with 325-nm ultraviolet and 633-nm visible laser excitations is performed on lateral p-type InP nanowires bridged between vertically oriented heavily p-doped single crystal silicon electrodes. Experimental results under 5 V bias demonstrate persistent photoconductivity through a slow decay of excess photocurrent with relaxation times ∼110 s and ∼50 s for the UV and visible laser illuminations, respectively. Persistent photocurrent originates from the long recombination time due to carrier trapping in vacancies, defect centers, and surface states in the InP nanowires. The study opens a new understanding of trap physics of nanowire heterostructures, a critical investigation for applications of these materials in photonic devices.

1992 ◽  
Vol 276 ◽  
Author(s):  
Mitsuteru Kimura ◽  
Kazuhiro Komatsuzaki

ABSTRACTMicroheater made of heavily Boron doped single crystal Si beam covered with SiO2 film, 1000×300×3 μm, is fabricated on the n type Si substrate by the anisotropic etching technique. As this microheater has an air bridge structure of low resistivity semiconductor material with positive but small temperature coefficient of resistance, a broad heating area up to 800 °C is easily obtained and it has quick response with the thermal time constant t of about 4 ms and has small power consumption. Since this heating area is made of p type layer in the n type substrate,this area can be electrically isolated from the substrate because of the formation of p-n junction.


1987 ◽  
Vol 107 ◽  
Author(s):  
P. Madakson ◽  
G.J. Clark ◽  
F.K. Legoues ◽  
F.M. d'Heurle ◽  
J.E.E. Baglin

Buried TiSi2 layers, about 600Å thick and 900Å below the surface, were formed in < 111> silicon by ion implantation. The implantation was done with either 120 or 170 keV Ti+ to doses ranging from 5 x 1016 to 2 x 1017 ions/cm2, and at temperatures of between ambient and 650° C. Annealing was done at 600° C, 700°C and 1000°C. Continuous buried layers were achieved only with samples implanted with doses equal or greater than 1017 ions/cm2 and at temperatures above 450°C. Below this dose TiSi2, was present only as discrete precipitates. For room temperature implants, the TiSi2, layer is formed on the surface. The damage present consists of dispersed TiSi6 precipitates and microtwins.


1987 ◽  
Vol 65 (8) ◽  
pp. 892-896 ◽  
Author(s):  
R. E. Thomas ◽  
C. E. Norman ◽  
S. Varma ◽  
G. Schwartz ◽  
E. M. Absi

A low-cost, high-yield technology for producing single-crystal silicon solar cells at high volumes, and suitable for export to developing countries, is described. The process begins with 100 mm diameter as-sawn single-crystal p-type wafers with one primary flat. Processing steps include etching and surface texturization, gaseous-source diffusion, plasma etching, and contacting via screen printing. The necessary adaptations of such standard processes as diffusion and plasma etching to solar-cell production are detailed. New process developments include a high-throughput surface-texturization technique, and automatic printing and firing of cell contacts.The technology, coupled with automated equipment developed specifically for the purpose, results in solar cells with an average efficiency greater than 12%, a yield exceeding 95%, a tight statistical spread on parameters, and a wide tolerance to starting substrates (including the first 100 mm diameter wafers made in Canada). It is shown that with minor modifications, the present single shift 500 kWp (kilowatt peak) per year capacity technology can be readily expanded to 1 MWp per year, adapted to square and polycrystalline substrates, and efficiencies increased above 13%.


1997 ◽  
Vol 490 ◽  
Author(s):  
Myung-Sik Son ◽  
Ho-Jung Hwang

ABSTRACTAn alternative three-dimensional (3D) Monte Carlo (MC) dynamic simulation model for phosphorus implant into (100) single-crystal silicon has been developed which incorporates the effects of channeling and damage. This model calculates the trajectories of both implanted ions and recoiled silicons and concurrently and explicitly affects both ions and recoils due to the presence of accumulative damage. In addition, the model for room-temperature implant accounts for the self-annealing effect using our defined recombination probabilities for vacancies and interstitials saved on the unit volumes. Our model has been verified by the comparison with the previously published SIMS data over commonly used energy range between 10 and 180 keV, using our proposed empirical electronic energy loss model. The 3D formations of the amorphous region and the ultra-shallow junction around the implanted region could be predicted by using our model, TRICSI (TRansport Ions into Crystal-Silicon).


1990 ◽  
Vol 182 ◽  
Author(s):  
B. Raicu ◽  
M.I. Current ◽  
W.A. Keenan ◽  
D. Mordo ◽  
R. Brennan ◽  
...  

AbstractHighly conductive p+-polysilicon films were fabricated over Si(100) and SiO2 surfaces using high-dose ion implantation and rapid thermal annealing. Resistivities close to that of single crystal silicon were achieved. These films were characterized by a variety of electrical and optical techniques as well as SIMS and cross-section TEM.


2020 ◽  
Vol 55 (17) ◽  
pp. 7359-7372 ◽  
Author(s):  
Hiroshi Yamaguchi ◽  
Junichi Tatami ◽  
Tsukaho Yahagi ◽  
Hiromi Nakano ◽  
Motoyuki Iijima ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document