Microheater Made of Heavily Boron Doped Single Crystal Silicon Beam

1992 ◽  
Vol 276 ◽  
Author(s):  
Mitsuteru Kimura ◽  
Kazuhiro Komatsuzaki

ABSTRACTMicroheater made of heavily Boron doped single crystal Si beam covered with SiO2 film, 1000×300×3 μm, is fabricated on the n type Si substrate by the anisotropic etching technique. As this microheater has an air bridge structure of low resistivity semiconductor material with positive but small temperature coefficient of resistance, a broad heating area up to 800 °C is easily obtained and it has quick response with the thermal time constant t of about 4 ms and has small power consumption. Since this heating area is made of p type layer in the n type substrate,this area can be electrically isolated from the substrate because of the formation of p-n junction.

1987 ◽  
Vol 65 (8) ◽  
pp. 892-896 ◽  
Author(s):  
R. E. Thomas ◽  
C. E. Norman ◽  
S. Varma ◽  
G. Schwartz ◽  
E. M. Absi

A low-cost, high-yield technology for producing single-crystal silicon solar cells at high volumes, and suitable for export to developing countries, is described. The process begins with 100 mm diameter as-sawn single-crystal p-type wafers with one primary flat. Processing steps include etching and surface texturization, gaseous-source diffusion, plasma etching, and contacting via screen printing. The necessary adaptations of such standard processes as diffusion and plasma etching to solar-cell production are detailed. New process developments include a high-throughput surface-texturization technique, and automatic printing and firing of cell contacts.The technology, coupled with automated equipment developed specifically for the purpose, results in solar cells with an average efficiency greater than 12%, a yield exceeding 95%, a tight statistical spread on parameters, and a wide tolerance to starting substrates (including the first 100 mm diameter wafers made in Canada). It is shown that with minor modifications, the present single shift 500 kWp (kilowatt peak) per year capacity technology can be readily expanded to 1 MWp per year, adapted to square and polycrystalline substrates, and efficiencies increased above 13%.


1990 ◽  
Vol 182 ◽  
Author(s):  
B. Raicu ◽  
M.I. Current ◽  
W.A. Keenan ◽  
D. Mordo ◽  
R. Brennan ◽  
...  

AbstractHighly conductive p+-polysilicon films were fabricated over Si(100) and SiO2 surfaces using high-dose ion implantation and rapid thermal annealing. Resistivities close to that of single crystal silicon were achieved. These films were characterized by a variety of electrical and optical techniques as well as SIMS and cross-section TEM.


2008 ◽  
Vol 1080 ◽  
Author(s):  
Ataur Sarkar ◽  
M. Saif Islam ◽  
Sungsoo Yi ◽  
A. Alec Talin

ABSTRACTRoom temperature photoelectrical characterization with 325-nm ultraviolet and 633-nm visible laser excitations is performed on lateral p-type InP nanowires bridged between vertically oriented heavily p-doped single crystal silicon electrodes. Experimental results under 5 V bias demonstrate persistent photoconductivity through a slow decay of excess photocurrent with relaxation times ∼110 s and ∼50 s for the UV and visible laser illuminations, respectively. Persistent photocurrent originates from the long recombination time due to carrier trapping in vacancies, defect centers, and surface states in the InP nanowires. The study opens a new understanding of trap physics of nanowire heterostructures, a critical investigation for applications of these materials in photonic devices.


Sign in / Sign up

Export Citation Format

Share Document