Large scale synthesis of vertical aligned CNT array on irregular quartz particles

2008 ◽  
Vol 1081 ◽  
Author(s):  
Qiang Zhang ◽  
Jiaqi Huang ◽  
Mengqiang Zhao ◽  
Weizhong Qian ◽  
Yao Wang ◽  
...  

ABSTRACTVertically aligned carbon nanotube (VACNT) arrays grown on quartz particles were produced in large amount via a floating catalysis process. Initially fast synchronous growth of VACNT arrays was observed, which is independently of the irregular shape and rough surface of the quartz particles. However, long VACNT arrays cracked and scattered anisotropically, depending on the irregular particles. The VACNTs have inner diameter of about 8.0 nm and relatively wide outer diameter distribution with a mean value of 36 nm. The outer diameter of CNTs, however, can be further decreased to 19 nm by tuning carbon source and concentration of catalyst precursor. The VACNTs have a high purity up to 97%. This work presents a simple way for controllable continuous production of VACNT array in large scale.

Nanomaterials ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 1590 ◽  
Author(s):  
Fabien Nassoy ◽  
Mathieu Pinault ◽  
Jérémie Descarpentries ◽  
Thomas Vignal ◽  
Philippe Banet ◽  
...  

Vertically aligned carbon nanotube (VACNT) forests are promising for supercapacitor electrodes, but their industrialisation requires a large-scale cost-effective synthesis process suitable to commercial aluminium (Al) foils, namely by operating at a low temperature (<660 °C). We show that Aerosol-Assisted Catalytic Chemical Vapour Deposition (CCVD), a single-step roll-to-roll compatible process, can be optimised to meet this industrial requirement. With ferrocene as a catalyst precursor, acetylene as a carbon source and Ar/H2 as a carrier gas, clean and dense forests of VACNTs of about 10 nm in diameter are obtained at 615 °C with a growth rate up to 5 µm/min. Such novel potentiality of this one-step CCVD process is at the state-of-the-art of the multi-step assisted CCVD processes. To produce thick samples, long synthesis durations are required, but growth saturation occurs that is not associated with a diffusion phenomenon of iron in aluminium substrate. Sequential syntheses show that the saturation trend fits a model of catalytic nanoparticle deactivation that can be limited by decreasing acetylene flow, thus obtaining sample thickness up to 200 µm. Cyclic voltammetry measurements on binder-free VACNT/Al electrodes show that the CNT surface is fully accessible to the ionic liquid electrolyte, even in these dense VACNT forests.


2007 ◽  
Vol 111 (40) ◽  
pp. 14638-14643 ◽  
Author(s):  
Qiang Zhang ◽  
Weiping Zhou ◽  
Weizhong Qian ◽  
Rong Xiang ◽  
Jiaqi Huang ◽  
...  

Author(s):  
Suriyakumar Dasarathan ◽  
Mukarram Ali ◽  
Tai-Jong Jung ◽  
Junghwan Sung ◽  
Yoon-Cheol Ha ◽  
...  

Vertically aligned Fe, S, and Fe-S doped anatase TiO2 nanotube arrays are prepared by electrochemical anodization process using an organic electrolyte in which lactic acid is added as an additive. In the electrolyte, nanotube layers of greater length (12 &mu;m) and high order with inner diameter of approx. 90 nm and outer diameter of approx. 170 nm are achieved. Doping of Fe, S, and Fe-S via simple wet impregnation method substituted Ti and O sites with Fe and S, which leads to enhance the rate performance at high discharge current densities. Discharge capacities of TiO2 tubes increased from 82 mAh g-1 (bare) to 165 mAh g-1 for Fe-S doped TiO2 at high current densities of 0.3 mAcm-2 after 100 cycles with exceptional capacity retention of 85% after 100 cycles. Owing to the enhancement of thermodynamic and kinetic properties by doping of Fe-S, Li-diffusion increas2ed resulting in remarkable discharge capacities of 143 mAh g-1 and 89 mAh g-1 at a current density of 7.4 mA cm-2 and 19 mA cm-2, respectively.


Water ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 649 ◽  
Author(s):  
Quansen Wang ◽  
Jianzhong Zhou ◽  
Kangdi Huang ◽  
Ling Dai ◽  
Gang Zha ◽  
...  

The risk inevitably exists in the process of flood control operation and decision-making of reservoir group, due to the hydrologic and hydraulic uncertain factors. In this study different stochastic simulation methods were applied to simulate these uncertainties in multi-reservoir flood control operation, and the risk caused by different uncertainties was evaluated from the mean value, extreme value and discrete degree of reservoir occupied storage capacity under uncertain conditions. In order to solve the conflict between risk assessment indexes and evaluate the comprehensive risk of different reservoirs in flood control operation schemes, the subjective weight and objective weight were used to construct the comprehensive risk assessment index, and the improved Mahalanobis distance TOPSIS method was used to select the optimal flood control operation scheme. The proposed method was applied to the flood control operation system in the mainstream and its tributaries of upper reaches of the Yangtze River basin, and 14 cascade reservoirs were selected as a case study. The results indicate that proposed method can evaluate the risk of multi-reservoir flood control operation from all perspectives and provide a new method for multi-criteria decision-making of reservoir flood control operation, and it breaks the limitation of the traditional risk analysis method which only evaluated by risk rate and cannot evaluate the risk of the multi-reservoir flood control operation system.


Diagnostics ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1145
Author(s):  
Magdalena Kal ◽  
Izabela Chojnowska-Ćwiąkała ◽  
Mateusz Winiarczyk ◽  
Monika Jasielska ◽  
Jerzy Mackiewicz

Background: The aim of this study was to evaluate the quantitative morphological changes in lamellar macular holes (LMHs) based on SD-OCT examinations and to assess the correlations among minimal retinal thickness (MRT), reading vision (RV), and best corrected visual acuity (BCVA) over a 36-month follow-up period. Methods: A group of 40 patients (44 eyes) with LMH was evaluated, with an average age of 69.87 (SD = 10.14). The quantitative parameters monitored in the follow-up period (at 0, 3, 6, 12, 18, 24, 30, and 36 months) were tested for normality of distribution by Shapiro–Wilk and Kolmogorov–Smirnov tests. Results: The RV and BCVA values were stable, and no significant changes were found at any of the check-ups during the 36-month follow-up period (BCVA p = 0.435 and RV p = 0.0999). The analysis of individual quantitative LMH parameters during the 36-month follow-up period did not demonstrate statistically significant differences: MRT (p = 0.461), Max RT temporal (p = 0.051), Max RT nasal (p = 0.364), inner diameter (ID) (p = 0.089), and outer diameter (OD) (p = 0.985). Conclusions: The observations at 0, 6, 12, 18, 24, 30, and 36 months revealed moderate and significant correlations between RV and MRT. No significant correlation between BCVA and MRT was observed.


Author(s):  
Ajay Kumar Kaviti ◽  
Akkala Siva Ram ◽  
Amit Kumar Thakur

In this experimental study, permanent magnets with three different sizes (M-1: 32 mm inner diameter, 70 mm outer diameter and 15 mm thick, M-2: 25 mm inner diameter, 60 mm outer diameter and 10 mm thick, M-3: 22 mm inner diameter, 45 mm outer diameter and 9 mm thick) are fully submerged in the single-slope glass solar still. The performance of magnetic solar stills (MSS) with three different sizes at 2 cm depth water to ensure that magnets are fully submerged is compared with conventional solar still (CSS) at the location 17.3850°N, 78.4867°E. Tiwari model is adapted to calculate the heat transfer coefficients (HTC), internal and exergy efficiencies. MSS with M-1, M-2 and M-3 significantly enhanced the convective, radiative, and evaporative heat transfer rate for the 2 cm depth of water. This is due to the desired magnetic treatment of water, which reduces the surface tension and increases the hydrogen bonds. The MSS's total internal HTC, instantaneous efficiencies led CSS by 25.52%, 28.8%, respectively, with M-1. Having various magnetic fields due to different magnets sizes increases MSS's exergetic efficiency by 33.61% with M-1, 33.76% with M-2, and 42.25% with M-3. Cumulative yield output for MSS with M-1, M-2, and M-3 is 21.66%, 17.64%, 15.78% higher than CSS. The use of permanent magnets of different sizes in the MSS is a viable, economical and straight forward technique to enhance productivity.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Jiyun Heo ◽  
Jae-Yun Han ◽  
Soohyun Kim ◽  
Seongmin Yuk ◽  
Chanyong Choi ◽  
...  

Abstract The vanadium redox flow battery is considered one of the most promising candidates for use in large-scale energy storage systems. However, its commercialization has been hindered due to the high manufacturing cost of the vanadium electrolyte, which is currently prepared using a costly electrolysis method with limited productivity. In this work, we present a simpler method for chemical production of impurity-free V3.5+ electrolyte by utilizing formic acid as a reducing agent and Pt/C as a catalyst. With the catalytic reduction of V4+ electrolyte, a high quality V3.5+ electrolyte was successfully produced and excellent cell performance was achieved. Based on the result, a prototype catalytic reactor employing Pt/C-decorated carbon felt was designed, and high-speed, continuous production of V3.5+ electrolyte in this manner was demonstrated with the reactor. This invention offers a simple but practical strategy to reduce the production cost of V3.5+ electrolyte while retaining quality that is adequate for high-performance operations.


Carbon ◽  
2017 ◽  
Vol 114 ◽  
pp. 755
Author(s):  
Ji-cheng Zhang ◽  
Yong-jian Tang ◽  
Yong Yi ◽  
Kang-fu Ma ◽  
Min-jie Zhou ◽  
...  

1995 ◽  
Vol 4 (6) ◽  
pp. 597-608 ◽  
Author(s):  
Jiro Hirai ◽  
Takehisa Matsuda

A tubular, hierarchically structured hybrid vascular tissue composed of vascular cells and collagen was prepared. First, a cold mixed solution of bovine aortic smooth muscle cells (SMCs) and Type I collagen was poured into a tubular glass mold composed of a mandrel and a sheath (example of dimensions: inner diameter, 1.5 mm; outer diameter, 7 mm; length, 7 cm). Upon incubation at 37°C, an SMC-incorporated collagenous gel was formed. After the sheath was removed, the resulting fragile tissue, when cultured in medium, thinned in a time-dependent manner to form an opaque, dense tissue. Higher SMC seeding density and lower initial collagen concentration induced more rapid and prominent shrinkage of the tissue. Morphologic investigation showed that over time, bipolarly elongated SMCs and collagen fiber bundles became positioned around the mandrel. Both components became circumferentially oriented. When the mandrel was removed, a tubular hybrid medial tissue was formed. A hybrid vascular tissue with a hierarchical structure was constructed by seeding endothelial cells onto the inner surface of the hybrid medial tissue. Prepared tissues tolerated luminal pressures as great as 100 mmHg and mechanical stress applied during an anastomotic procedure. This method allowed us to prepare a tubular hybrid medial tissue of predetermined size (inner diameter, wail thickness, and length) by selecting appropriate mold design, initial collagen concentration, and SMC seeding density. Such hybrid vascular tissues may provide physiological functions when implanted into the venous system.


2008 ◽  
Vol 21 (4) ◽  
pp. 788-801 ◽  
Author(s):  
Jee-Hoon Jeong ◽  
Baek-Min Kim ◽  
Chang-Hoi Ho ◽  
Yeon-Hee Noh

Abstract The variations in the wintertime precipitation over East Asia and the related large-scale circulation associated with the Madden–Julian oscillation (MJO) are examined. By analyzing the observed daily precipitation for the period 1974–2000, it is found that the MJO significantly modulates the distribution of precipitation over four East Asian countries; the precipitation rate difference between wet and dry periods over East Asia, when the centers of MJO convective activities are located over the Indian Ocean and western Pacific, respectively, reaches 3–4 mm day−1, which corresponds to the climatological winter-mean value. Composite analysis with respect to the MJO suggests that the MJO–precipitation relation is mostly explained by the strong vertical motion anomalies near an entrance region of the East Asia upper-tropospheric jet and moisture supply in the lower troposphere. To elucidate different dynamic origins of the vertical motion generated by the MJO, diagnostic analysis of a generalized omega equation is adopted. It is revealed that about half of the vertical motion anomalies in East Asia are induced by the quasigeostrophic forcings by the MJO, while diabatic heating forcings explain a very small fraction, less than 10% of total anomalies.


Sign in / Sign up

Export Citation Format

Share Document