Self-Organized, Tubular Hybrid Vascular Tissue Composed of Vascular Cells and Collagen for Low-Pressure-Loaded Venous System

1995 ◽  
Vol 4 (6) ◽  
pp. 597-608 ◽  
Author(s):  
Jiro Hirai ◽  
Takehisa Matsuda

A tubular, hierarchically structured hybrid vascular tissue composed of vascular cells and collagen was prepared. First, a cold mixed solution of bovine aortic smooth muscle cells (SMCs) and Type I collagen was poured into a tubular glass mold composed of a mandrel and a sheath (example of dimensions: inner diameter, 1.5 mm; outer diameter, 7 mm; length, 7 cm). Upon incubation at 37°C, an SMC-incorporated collagenous gel was formed. After the sheath was removed, the resulting fragile tissue, when cultured in medium, thinned in a time-dependent manner to form an opaque, dense tissue. Higher SMC seeding density and lower initial collagen concentration induced more rapid and prominent shrinkage of the tissue. Morphologic investigation showed that over time, bipolarly elongated SMCs and collagen fiber bundles became positioned around the mandrel. Both components became circumferentially oriented. When the mandrel was removed, a tubular hybrid medial tissue was formed. A hybrid vascular tissue with a hierarchical structure was constructed by seeding endothelial cells onto the inner surface of the hybrid medial tissue. Prepared tissues tolerated luminal pressures as great as 100 mmHg and mechanical stress applied during an anastomotic procedure. This method allowed us to prepare a tubular hybrid medial tissue of predetermined size (inner diameter, wail thickness, and length) by selecting appropriate mold design, initial collagen concentration, and SMC seeding density. Such hybrid vascular tissues may provide physiological functions when implanted into the venous system.

1996 ◽  
Vol 5 (1) ◽  
pp. 93-105 ◽  
Author(s):  
Jiro Hirai ◽  
Takehisa Matsuda

In this study, a tubular hybrid vascular tissue composed of vascular cells and collagen was implanted as a venous substitute, and its remodeling process was histologically investigated. First, a hybrid medial tissue was prepared by pouring a cold mixed solution of canine jugular smooth muscle cells (SMCs) and Type I collagen into a tubular glass mold and subsequent incubation at 37°C. Culture in medium for 10 days produced a dense tubular tissue. Seeding of jugular endothelial cells (ECs) onto the luminal surface of the tissue produced a hybrid vascular tissue with a hierarchical structure. These vascular tissues (inner diameter, 7 mm; length, 3 cm; wall thickness, 1 mm; n = 14) were implanted autologously in the canine posterior vena cava wrapped in Dacron mesh for up to 24 wk. Nine of 14 grafts were patent throughout implantation. In patent grafts, monolayered ECs were oriented in the direction of blood flow at 1 wk. Circumferentially oriented SMCs accumulated at the subendothelial layer and ingrown fibroblasts were sparsely distributed throughout the wall at 12 wk. Contractile phenotype of SMCs was evident at 24 wk. Collagen fibrils, which were sparsely distributed at an early period of implantation, gradually assembled to form fibrous meshes at 24 wk. Sheet-like elastic lamellae were also observed at this time. Marked wall thinning was observed at 12 and 24 wk. The resultant tissues became highly dense. The specific gravity of tissues increased with time, and reached those of natural vessels at 24 wk. Tissue remodeling progressed in a time-dependent manner and appeared to be almost complete within 6 mo of implantation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rowan P. Rimington ◽  
Jacob W. Fleming ◽  
Andrew J. Capel ◽  
Patrick C. Wheeler ◽  
Mark P. Lewis

AbstractInvestigations of the human neuromuscular junction (NMJ) have predominately utilised experimental animals, model organisms, or monolayer cell cultures that fail to represent the physiological complexity of the synapse. Consequently, there remains a paucity of data regarding the development of the human NMJ and a lack of systems that enable investigation of the motor unit. This work addresses this need, providing the methodologies to bioengineer 3D models of the human motor unit. Spheroid culture of iPSC derived motor neuron progenitors augmented the transcription of OLIG2, ISLET1 and SMI32 motor neuron mRNAs ~ 400, ~ 150 and ~ 200-fold respectively compared to monolayer equivalents. Axon projections of adhered spheroids exceeded 1000 μm in monolayer, with transcription of SMI32 and VACHT mRNAs further enhanced by addition to 3D extracellular matrices in a type I collagen concentration dependent manner. Bioengineered skeletal muscles produced functional tetanic and twitch profiles, demonstrated increased acetylcholine receptor (AChR) clustering and transcription of MUSK and LRP4 mRNAs, indicating enhanced organisation of the post-synaptic membrane. The number of motor neuron spheroids, or motor pool, required to functionally innervate 3D muscle tissues was then determined, generating functional human NMJs that evidence pre- and post-synaptic membrane and motor nerve axon co-localisation. Spontaneous firing was significantly elevated in 3D motor units, confirmed to be driven by the motor nerve via antagonistic inhibition of the AChR. Functional analysis outlined decreased time to peak twitch and half relaxation times, indicating enhanced physiology of excitation contraction coupling in innervated motor units. Our findings provide the methods to maximise the maturity of both iPSC motor neurons and primary human skeletal muscle, utilising cell type specific extracellular matrices and developmental timelines to bioengineer the human motor unit for the study of neuromuscular junction physiology.


2021 ◽  
Vol 22 (1) ◽  
pp. 394
Author(s):  
Simone Krueger ◽  
Alexander Riess ◽  
Anika Jonitz-Heincke ◽  
Alina Weizel ◽  
Anika Seyfarth ◽  
...  

In cell-based therapies for cartilage lesions, the main problem is still the formation of fibrous cartilage, caused by underlying de-differentiation processes ex vivo. Biophysical stimulation is a promising approach to optimize cell-based procedures and to adapt them more closely to physiological conditions. The occurrence of mechano-electrical transduction phenomena within cartilage tissue is physiological and based on streaming and diffusion potentials. The application of exogenous electric fields can be used to mimic endogenous fields and, thus, support the differentiation of chondrocytes in vitro. For this purpose, we have developed a new device for electrical stimulation of chondrocytes, which operates on the basis of capacitive coupling of alternating electric fields. The reusable and sterilizable stimulation device allows the simultaneous use of 12 cavities with independently applicable fields using only one main supply. The first parameter settings for the stimulation of human non-degenerative chondrocytes, seeded on collagen type I elastin-based scaffolds, were derived from numerical electric field simulations. Our first results suggest that applied alternating electric fields induce chondrogenic re-differentiation at the gene and especially at the protein level of human de-differentiated chondrocytes in a frequency-dependent manner. In future studies, further parameter optimizations will be performed to improve the differentiation capacity of human cartilage cells.


Diagnostics ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1145
Author(s):  
Magdalena Kal ◽  
Izabela Chojnowska-Ćwiąkała ◽  
Mateusz Winiarczyk ◽  
Monika Jasielska ◽  
Jerzy Mackiewicz

Background: The aim of this study was to evaluate the quantitative morphological changes in lamellar macular holes (LMHs) based on SD-OCT examinations and to assess the correlations among minimal retinal thickness (MRT), reading vision (RV), and best corrected visual acuity (BCVA) over a 36-month follow-up period. Methods: A group of 40 patients (44 eyes) with LMH was evaluated, with an average age of 69.87 (SD = 10.14). The quantitative parameters monitored in the follow-up period (at 0, 3, 6, 12, 18, 24, 30, and 36 months) were tested for normality of distribution by Shapiro–Wilk and Kolmogorov–Smirnov tests. Results: The RV and BCVA values were stable, and no significant changes were found at any of the check-ups during the 36-month follow-up period (BCVA p = 0.435 and RV p = 0.0999). The analysis of individual quantitative LMH parameters during the 36-month follow-up period did not demonstrate statistically significant differences: MRT (p = 0.461), Max RT temporal (p = 0.051), Max RT nasal (p = 0.364), inner diameter (ID) (p = 0.089), and outer diameter (OD) (p = 0.985). Conclusions: The observations at 0, 6, 12, 18, 24, 30, and 36 months revealed moderate and significant correlations between RV and MRT. No significant correlation between BCVA and MRT was observed.


Author(s):  
Ajay Kumar Kaviti ◽  
Akkala Siva Ram ◽  
Amit Kumar Thakur

In this experimental study, permanent magnets with three different sizes (M-1: 32 mm inner diameter, 70 mm outer diameter and 15 mm thick, M-2: 25 mm inner diameter, 60 mm outer diameter and 10 mm thick, M-3: 22 mm inner diameter, 45 mm outer diameter and 9 mm thick) are fully submerged in the single-slope glass solar still. The performance of magnetic solar stills (MSS) with three different sizes at 2 cm depth water to ensure that magnets are fully submerged is compared with conventional solar still (CSS) at the location 17.3850°N, 78.4867°E. Tiwari model is adapted to calculate the heat transfer coefficients (HTC), internal and exergy efficiencies. MSS with M-1, M-2 and M-3 significantly enhanced the convective, radiative, and evaporative heat transfer rate for the 2 cm depth of water. This is due to the desired magnetic treatment of water, which reduces the surface tension and increases the hydrogen bonds. The MSS's total internal HTC, instantaneous efficiencies led CSS by 25.52%, 28.8%, respectively, with M-1. Having various magnetic fields due to different magnets sizes increases MSS's exergetic efficiency by 33.61% with M-1, 33.76% with M-2, and 42.25% with M-3. Cumulative yield output for MSS with M-1, M-2, and M-3 is 21.66%, 17.64%, 15.78% higher than CSS. The use of permanent magnets of different sizes in the MSS is a viable, economical and straight forward technique to enhance productivity.


Reproduction ◽  
2011 ◽  
Vol 141 (2) ◽  
pp. 163-171 ◽  
Author(s):  
Ichiro Tanii ◽  
Tadashi Aradate ◽  
Kouhei Matsuda ◽  
Akira Komiya ◽  
Hideki Fuse

The developing acrosome in spermatids contains pituitary adenylate cyclase-activating polypeptide (PACAP). However, the role of the acrosomal PACAP remains unclear because it has not been detected in mature spermatids and sperm. We reinvestigated whether the sperm acrosome contains PACAP. An antiserum produced against PACAP reacted to the anterior acrosome in epididymal sperm fixed under mild conditions, suggesting that PACAP acts on oocytes and/or cumulus cells at the site of fertilization. Immunolabeling and RT-PCR demonstrated the presence of PACAP type I receptor, a PACAP-specific receptor, in postovulatory cumulus cells. To investigate the role of PACAP in fertilization, we pretreated cumulus–oocyte complexes with the polypeptide. At a low concentration of sperm, the fertilization rate was significantly enhanced by PACAP in a dose-dependent manner. Sperm penetration through the oocyte investment, cumulus layer, and zona pellucida was also enhanced by PACAP. The enhancement was probably due to an enhancement in sperm motility and the zona-induced acrosome reaction, which were stimulated by a cumulus cell-releasing factor. Indeed, PACAP treatment increased the secretion of progesterone from the cumulus–oocyte complexes. These results strongly suggest that in response to PACAP, cumulus cells release a soluble factor that probably stimulates sperm motility and the acrosome reaction, thereby promoting fertilization.


Cancers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 533
Author(s):  
Rania F. Zaarour ◽  
Bilal Azakir ◽  
Edries Y. Hajam ◽  
Husam Nawafleh ◽  
Nagwa A. Zeinelabdin ◽  
...  

Programmed cell death or type I apoptosis has been extensively studied and its contribution to the pathogenesis of disease is well established. However, autophagy functions together with apoptosis to determine the overall fate of the cell. The cross talk between this active self-destruction process and apoptosis is quite complex and contradictory as well, but it is unquestionably decisive for cell survival or cell death. Autophagy can promote tumor suppression but also tumor growth by inducing cancer-cell development and proliferation. In this review, we will discuss how autophagy reprograms tumor cells in the context of tumor hypoxic stress. We will illustrate how autophagy acts as both a suppressor and a driver of tumorigenesis through tuning survival in a context dependent manner. We also shed light on the relationship between autophagy and immune response in this complex regulation. A better understanding of the autophagy mechanisms and pathways will undoubtedly ameliorate the design of therapeutics aimed at targeting autophagy for future cancer immunotherapies.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 1094.1-1094
Author(s):  
A. S. Siebuhr ◽  
P. Juhl ◽  
M. Karsdal ◽  
A. C. Bay-Jensen

Background:Interleukin 6 (IL-6) is known to have both pro- and anti-inflammatory properties, depending on the receptor activation. The classical IL-6 signaling via the membrane bound receptor is mainly anti-inflammatory, whereas signaling through the soluble receptor (sIL-6R) is pro-inflammatory/pro-fibrotic. However, the direct fibrotic effect of IL-6 stimulation on dermal fibroblasts is unknown.Objectives:We investigated the fibrotic effect of IL-6 + sIL-6R in a dermal fibroblast model and assessed fibrosis by neo-epitope biomarkers of extracellular matrix proteins.Methods:Primary healthy human dermal fibroblasts were grown for up to 17 days in DMEM medium with 0.4% fetal calf serum, ficoll (to produce a crowded environment) and ascorbic acid. IL-6 [1-90 nM]+sIL-6R [0.1-9 nM] alone or in combination with TGFβ [1 nM] were tested in three different donors. TGFβ [1 nM], PDGF-AB [3 nM] and non-stimulated cells (w/o) were used as controls. Tocilizumab (TCZ) with TGFβ + IL-6 + sIL-6R stimulation was tested in one donor. Collagen type I, III and VI formation (PRO-C1, PRO-C3 and PRO-C6) and fibronectin (FBN-C) were evaluated by validated ELISAs (Nordic Bioscience). Western blot analysis investigated signal cascades. Gene expression of selected ECM proteins was analyzed. Statistical analyses included One-way and 2-way ANOVA and area under the curve analysis.Results:formation by the end of the culture period. The fibronectin and collagen type VI signal were consistent between the three tested donors, whereas the formation of type III collagen was only increased in one donor, but in several trials. Type I collagen formation was unchanged by IL-6 + sIL-6R stimulation. The gene expression of type I collagen was induced by IL-6 + sIL-6R. Western blot analysis validated trans-signaling by the IL-6+sIL-6R stimulation as expected.IL-6 + sIL-6R stimulation in combination with TGFβ decreased fibronectin levels compared to TGFβ alone but did not reach the level of unstimulated fibroblasts. The formation of collagen type IV was generally unchanged with IL-6 + sIL-6R + TGFβ compared to TGFβ alone. Collagen type I and III formation was more scattered in the signals when IL-6 + sIL-6R was in combination with TGFβ, as the biomarker level could be either decreased or increased compared to TGFβ alone. In two studies the type I collagen level was synergistic increased by IL-6 + sIL-6R + TGFβ, whereas another study found the level to be decreased compared to TGFβ alone. The gene expression of fibronectin and type I collagen was increased with TGFβ +IL-6+sIL-6R compared to TGFβ alone.Inhibition of IL-6R by TCZ in combination with IL-6 + sIL-6R did only decrease the fibronectin level with the lowest TCZ concentration (p=0.03). TCZ alone decreased the fibronectin level in a dose-dependent manner (One-way ANOVA p=0.0002).Conclusion:We investigated the fibrotic response of dermal fibroblasts to IL-6 + sIL-6R stimulation. IL-6 modulated the fibronectin level and modulated the collagen type III formation level in a somewhat dose-dependent manner. In combination with TGFβ, IL-6 decreased collagen type I and IV formation and fibronectin. However, in this study inhibition of IL-6R by TCZ did not change the fibrotic response of the dermal fibroblasts. This study indicated that IL-6 did not induce collagen formation in dermal fibroblasts, except type III collagen formation with high IL-6 concentration.Figure:Disclosure of Interests:Anne Sofie Siebuhr Employee of: Nordic Bioscience, Pernille Juhl Employee of: Nordic Bioscience, Morten Karsdal Shareholder of: Nordic Bioscience A/S., Employee of: Full time employee at Nordic Bioscience A/S., Anne-Christine Bay-Jensen Shareholder of: Nordic Bioscience A/S, Employee of: Full time employee at Nordic Bioscience A/S.


2011 ◽  
Vol 284-286 ◽  
pp. 1794-1799 ◽  
Author(s):  
Yu Lu Wang ◽  
Xue Pin Liao ◽  
Bi Shi

Type I collagen was isolated from calf skin and its assembly on PVA film induced by glutaraldehyde vapor was investigated. It was found that the collagen molecules were firstly orientationally assembled into collagen fibers under the inducement of glutaraldehyde vapor. Then the collagen fibers could be further aggregated into novel network structure in proper conditions of the induced reaction. The morphology of the assembled collagen fibers was depended on induced time and concentration of collagen. The network arrangement could be obtained after being induced for 72h when collagen concentration was 2.5mg/ml. At higher concentration of collagen (5 mg/ml), the collagen fibers with larger dimension were obtained, but the growth of fibers was almost in one direction.


Sign in / Sign up

Export Citation Format

Share Document