Effect of Gallium Oxide on Phase Assemblage in Apatite and Whitlockite Hosts for Waste Immobilization

2008 ◽  
Vol 1107 ◽  
Author(s):  
Lee. A. Gerrard ◽  
Shirley. K. Fong ◽  
Brian. L. Metcalfe ◽  
Ian. W. Donald

AbstractTo immobilize halide and actinide ions present in specific ILW waste a process has been developed that uses mineral phases as the host material. The mechanism of substitution of gallium into these phases will have a large effect on the phase assemblage. This will inevitably affect the total amount of halide that can be immobilized in to total phase mixture.The full simulated waste stream composition containing varying concentrations (1–40 wt.%) of gallium oxide was studied. Also nominal compositions for gallium doped fluorapatites (Ca10-1.5xGax)F2(PO4)6 (x = 0, 0.25, 0.5, 0.75, 1.0) and gallium doped whitlockites Ca9Gay(PO4)6+y (x = 0.2, 0.4, 0.6, 0.8, 1.0) were prepared at 750–1050 °C.These were studied by powder x-ray diffraction (XRD) to determine the phase assemblage and solid solution limits of gallium in the apatite and whitlockite phases. It was found that a complete solid solution was formed between whitlockite, Ca3(PO4)2, and Ca9Gay(PO4)6+y. In the nominal apatite compositions it was found that gallium did not substitute into the apatite structure but was instead partitioned over Ca9Gay(PO4)6+y, gallium phosphate, and unreacted gallium oxide. At higher temperatures gallium suppressed the formation of the apatite phase and was largely partitioned into the Ca9Gay(PO4)6+y phase whereas at lower temperature the majority was present as unreacted Ga2O3. In the full DCHP compositions it was found that gallium is likely to be partitioned over a number of phases including apatite, cationdoped whitlockite and gallium phosphate.

1990 ◽  
Vol 54 (377) ◽  
pp. 603-608 ◽  
Author(s):  
H. de Bruiyn ◽  
W. A. Van Der Westhuizen ◽  
G. J. Beukes ◽  
T. Q. Meyer

AbstractCorkite associated with plumbojarosite and goethite occurs in gossan and iron-formation at Black Mountain and Broken Hill, Aggeneys. Electron microprobe analyses indicate that there are two groups of corkite present in the area; one with high Cu and low (PO4)3− and the other with low Cu and high (PO and the other with low Cu and high (PO4)3− contents. This can be explained in terms of the general formula contents. This can be explained in terms of the general formula AB2(XO4)2(OH)6, where the incorporation of divalent ions in the B site is accompanied by the exchange of trivalent anions by divalent ones to retain charge balance. Complete solid-solution is inferred between (SO4)2−and (PO4)3− end members, indicating that the jarosite and beudantite groups form part of the same solid-solution series. The distribution of Zn in corkite also reflects the regional distribution of zinc grades in the area, becoming more zinc-rich from west to east. New X-ray diffraction parameters are also presented which update existing data.


2013 ◽  
Vol 77 (3) ◽  
pp. 269-274 ◽  
Author(s):  
L. Bindi ◽  
F. Zaccarini ◽  
G. Garuti ◽  
N. Angeli

AbstractChemical and structural data are reported for platinum–palladium intermediates from two nuggets found at Córrego Bom Sucesso, Minas Gerais, Brazil. Three grains with simple stoichiometries (i.e. PtxPd1−x with x ∼0.67, ∼0.5 and ∼0.33, which correspond to Pt2Pd, PtPd and PtPd2, respectively) were characterized by single-crystal X-ray diffraction and electron-probe microanalysis. In the absence of single-crystal data it might be tempting to hypothesize that such simple stoichiometries represent distinct mineral species, however structural analyses show that all of the phases are cubic and crystallize in space group Fmm. They are, therefore, natural intermediates in the palladium–platinum solid solution. Reflectance and micro-hardness values are reported for the samples and a comparison with the pure metallic elements made. On the basis of information gained from the chemical and structural characterization it can be concluded that there is a complete solid solution between Pt and Pd in nature. These findings corroborate results from experiments on synthetic compounds.


2010 ◽  
Vol 659 ◽  
pp. 31-36
Author(s):  
Támas Korim

Solid solutions formed within the Al2O3-TiO2-Fe2O3 (Fe2xAl2(1-x)TiO5) system upon heat treatment were investigated by adjusting the substituting Fe3+ content in the range of x=0.0 to 1.0. X-ray diffraction phase analyses and lattice parameter determinations confirmed that substitution of Fe3+ ions within the aluminium titanate lattice was complete. For this complete solid solution, however, the trends observed for changes in d-spacing values indicated that there were certain discrete compositions to identify with Fe3+ substitution. Within these, Fe0.4Al1.6TiO5 and Fe1.6Al0.4TiO5 crystalline phases were investigated in detail and their X-ray diffraction cards were constructed. Self-healing effect occurring in repeated heating-cooling cycles in Fe3+ doped AT ceramics were proved; it was demonstrated that Fe3+ doped AT ceramics do not decompose even if exposed to repeated thermal shock.


Author(s):  
Steffen Klenner ◽  
Maximilian Kai Reimann ◽  
Rainer Pöttgen

Abstract Eu3Pt4Zn12 and Sr3Pt4Zn12 form a complete solid solution Eu3−x Sr x Pt4Zn12. Samples with x = 0, 0.5, 1, 1.5, 2, 2.5 and 3 were synthesized from the elements in sealed tantalum ampoules in an induction furnace. All samples were characterized by powder X-ray diffraction and the structures of Sr3Pt3.93Zn12.07, Eu1.80Sr1.20Pt4Zn12 and Eu3Pt3.68Zn12.32 were refined from single crystal X-ray diffractometer data. The new compounds are isotypic with Gd3Ru4Al12, space group P63/mmc. The striking building units in these phases are the kagome networks occupied by the europium and strontium atoms and Pt1@Zn8 and Pt2@Zn8 distorted cubes. Besides the Eu/Sr mixing within the solid solution, the structure refinements indicated small homogeneity ranges induced by Pt/Zn mixing. The europium containing samples of the solid solution Eu3−x Sr x Pt4Zn12 are Curie–Weiss paramagnets and the experimental magnetic moments manifest stable divalent europium. The samples with x = 0, 0.5 and 2 order magnetically: T N = 15.4(1) K for x = 0, T C = 12.4(1) K for x = 0.5 and T N = 4.0(1) K for x = 2. The 3 K magnetization isotherms tend toward Brillouin type behavior with increasing europium dilution. The divalent ground state of Eu3Pt4Zn12 is further confirmed by 151Eu Mössbauer spectroscopy with an isomer shift of −9.66(2) mm s−1 at 78 K. In the magnetically ordered state Eu3Pt4Zn12 shows full magnetic hyperfine field splitting (23.0(1) T).


2020 ◽  
Vol 43 (1) ◽  
pp. 7-14
Author(s):  
Ali Can Ersan ◽  
Azmi Seyhun Kipcak ◽  
Meral Yildirim Ozen ◽  
Nurcan Tugrul

AbstractRecently, sonochemistry has been used for the synthesis of inorganic compounds, such as zinc borates. In this study using zinc sulphate heptahydrate (ZnSO4·7H2O) and boric acid (H3BO3) as starting materials, a zinc borate compound in the form of Zn3B6O12·3.5H2O was synthesized using an ultrasonic probe. Product’s characterization was carried out with using X-ray diffraction (XRD), Scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FT-IR) and Raman spectroscopy. Zinc borate compound’s chemical bond structure was observed with Raman and FTIR. From the XRD results it was seen that Zn3B6O12·3.5H2O can be quickly synthesized upon heating at 80°C and 85°C (55 min) or 90°C (45 min) in very high yield (>90%). The minimum particle size obtained was ~143 μm from the SEM results. Zinc borate compound was synthesized at a lower temperature in less time than other synthesized zinc metal compound in literature.


Crystals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 313
Author(s):  
Mohamad M. Ahmad ◽  
Hicham Mahfoz Kotb ◽  
Celin Joseph ◽  
Shalendra Kumar ◽  
Adil Alshoaibi

La2/3Cu3Ti4O12 (LCTO) powder has been synthesized by the mechanochemical milling technique. The pelletized powder was conventionally sintered for 10 h at a temperature range of 975–1025 °C, which is a lower temperature process compared to the standard solid-state reaction. X-ray diffraction analysis revealed a cubic phase for the current LCTO ceramics. The grain size of the sintered ceramics was found to increase from 1.5 ± 0.5 to 2.3 ± 0.5 μm with an increase in sintering temperature from 975 to 1025 °C. The impedance results show that the grain conductivity is more than three orders of magnitude larger than the grain boundary conductivity for LCTO ceramics. All the samples showed a giant dielectric constant (1.7 × 103–3.4 × 103) and dielectric loss (0.09–0.17) at 300 K and 10 kHz. The giant dielectric constant of the current samples was attributed to the effect of internal barrier layer capacitances due to their electrically inhomogeneous structure.


2021 ◽  
Vol 875 ◽  
pp. 160031
Author(s):  
Abdollah Bahador ◽  
Junko Umeda ◽  
Ridvan Yamanoglu ◽  
Astuty Amrin ◽  
Abdulaziz Alhazaa ◽  
...  

Author(s):  
Ryo Wakabayashi ◽  
Kohei Yoshimatsu ◽  
Mai Hattori ◽  
Jung-Soo Lee ◽  
Osami Sakata ◽  
...  

Catalysts ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 640
Author(s):  
Hideaki Sasaki ◽  
Keisuke Sakamoto ◽  
Masami Mori ◽  
Tatsuaki Sakamoto

CeO2-based solid solutions in which Pd partially substitutes for Ce attract considerable attention, owing to their high catalytic performances. In this study, the solid solution (Ce1−xPdxO2−δ) with a high Pd content (x ~ 0.2) was synthesized through co-precipitation under oxidative conditions using molten nitrate, and its structure and thermal decomposition were examined. The characteristics of the solid solution, such as the change in a lattice constant, inhibition of sintering, and ionic states, were examined using X-ray diffraction (XRD), scanning electron microscopy–energy-dispersive X-ray spectroscopy (SEM−EDS), transmission electron microscopy (TEM)−EDS, and X-ray photoelectron spectroscopy (XPS). The synthesis method proposed in this study appears suitable for the easy preparation of CeO2 solid solutions with a high Pd content.


2009 ◽  
Vol 2009 ◽  
pp. 1-4 ◽  
Author(s):  
L. Bourja ◽  
B. Bakiz ◽  
A. Benlhachemi ◽  
M. Ezahri ◽  
J. C. Valmalette ◽  
...  

A series of ceramics samples belonging to theCeO2-Bi2O3phase system have been prepared via a coprecipitation route. The crystallized phases were obtained by heating the solid precursors at600∘Cfor 6 hours, then quenching the samples. X-ray diffraction analyses show that forx<0.20a solid solutionCe1−xBixO2−x/2with fluorine structure is formed. For x ranging between 0.25 and 0.7, a tetragonalβ′phase coexisting with the FCC solid solution is observed. For x ranging between 0.8 and 0.9, a new tetragonalβphase appears. Theβ′phase is postulated to be a superstructure of theβphase. Finally, close tox=1, the classical monoclinicα Bi2O3structure is observed. Raman spectroscopy confirms the existence of the phase changes as x varies between 0 and 1.


Sign in / Sign up

Export Citation Format

Share Document