Influence of the Temperature of Implantation on the Morphology of Defects in MeV Implanted GaAs.

1989 ◽  
Vol 147 ◽  
Author(s):  
G. Braunstein ◽  
Samuel Chen ◽  
S.-Tong Lee ◽  
G. Rajeswaran.

AbstractWe have studied the influence of the temperature of implantation on the morphology of the defects created during 1-MeV implantation of Si into GaAs, using RBS-channeling and TEM. The annealing behavior of the disorder has also been investigated.Implantation at liquid-nitrogen temperature results in the amorphization of the implanted sample for doses of 2×1014 cm−2 and larger. Subsequent rapid thermal annealing at 900°C for 10 seconds leads to partial epitaxial regrowth of the amorphous layer. Depending on the implantation dose, the regrowth can proceed from both the front and back ends of the amorphous region or only from the deep end of the implanted zone. Nucleation and growth of a polycrystalline phase occurs concurrently, limiting the extent of the epitaxial regrowth. After implantation at room temperature and above, two distinct types of residual defects are observed or inferred: point defect complexes and dislocation loops. Most of the point defects disappear after rapid thermal annealing at temperatures ≥ 700°C. The effect of annealing on the dislocation loops depends on the distance from the surface of the sample. Those in the near surface region disappear upon rapid thermal annealing at 700°C, whereas the loops located deeper in the sample grow in size and begin to anneal out only at temperatures in excess of 900°C. Implantation at temperatures of 200 - 300°C results in a large reduction in the number of residual point defects. Subsequent annealing at 900°C leads to a nearly defect-free surface region and, underneath that, a buried band of partial dislocation loops similar to those observed in the samples implanted at room temperature and subsequently annealed.

1983 ◽  
Vol 23 ◽  
Author(s):  
D.K. Sadana ◽  
E. Myers ◽  
J. Liu ◽  
T. Finstad ◽  
G.A. Rozgonyi

ABSTRACTGermanium implantation into Si was conducted to pre-amorphize the-si surface layer prior to a shallow/high dose (42 keV, 2 × 1015 cm−2) BF2 implant. Cross-sectional transmission electron microscopy showed that rapid thermal annealing (RTA) of the amorphous layer (without BF2 ) leaves defect-free material in the implanted region. Only a discrete layer of small (∼300Å) dislocation loops due to straggling ion damage was found to be present at a depth corresponding to the amorphous/crystalline interface. RTA of the amorphous layer with the BF2 creatpd a high density of uniformly. distributed fine defect clusters (∼50Å) in the surface region (0–500Å) in addition to the straggling ion damage. Boron and F profiles obtained by secondary ion mass spectrometry from the unannealed and rapid thermally annealed samples showed the presence of high concentrations of these impurities in the surface region where the fine defect clusters were observed. A comparison of the RTA behavior of the pre-amorphized surface layers (with or without BF2 ) produced by Ge and self-implantation is presented.


2005 ◽  
Vol 864 ◽  
Author(s):  
Ukyo Jeong ◽  
Jinning Liu ◽  
Baonian Guo ◽  
Kyuha Shim ◽  
Sandeep Mehta

AbstractChange in dopant diffusion was observed for Arsenic source drain extension (SDE) implants when they were performed at various dose rates. The high dose SDE implant amorphizes the surface of the silicon substrate and the thickness of the amorphous layer is strongly influenced by the rate of dopant bombardment. It is well known that the ion implantation process introduces excess interstitials. While the amorphous region is completely re-grown into single crystal during subsequent anneal without leaving behind extended defects, interstitials that are injected beyond the amorphous layer lead to formation of {311} defects or dislocation loops in the end of range region. During thermal processing, these extended defects dissolve, release interstitials, which in turn lead to transient enhanced diffusion of underlying Boron halo dopant. Dopant depth profiles measured by SIMS revealed different amount of Boron pile-up in the near surface region, corresponding to different SDE implant dose rates. In CMOS devices, this surface pile-up would correlate with a Boron pile-up in the channel region that would lead to a shift in transistor characteristics. Through this investigation, we were able to explain the mechanism causing device characteristics shift resulted from SDE implant with the same dose and energy but different dose rates.


1995 ◽  
Vol 379 ◽  
Author(s):  
D.Y.C. Lie ◽  
J.H. Song ◽  
M.-A. Nicolet ◽  
N.D. Theodore ◽  
J. Candelaria ◽  
...  

ABSTRACTMetastable pseudomorphic GexSi1−x (x=8%,16%) films were deposited on p-Si(100) substrates by chemical-vapor-deposition and then implanted at room temperature with 90 keV arsenic ions to a dose of 1.5×1015/cm2. The implantation amorphizes approximately the top 125 nm of the 145 nm-thick GeSi layers. The Si-GeSi interfaces remain sharp after implantation. Implanted and non-implanted GeSi samples, together with implanted Si control samples, were subsequently annealed simultaneously by rapid thermal annealing in a nitrogen ambient at 600,700,800 × for 10,20,40s at each temperature. The implanted samples undergo layer-by-layer solid-phase epitaxial regrowth during annealing at or above 600 ×C. The amorphized and regrown GeSi layers are always fully relaxed with a very high density of dislocations (1010-1011/cm2). At a fixed annealing temperature, strain relaxation of an implanted GeSi film is substantially more extensive than that of a non-implanted one. About 50-90% of the implanted arsenic ions become electrically active after the completion of solid-phase epitaxy. The percentages of arsenic ions that are activated in the Si control samples are generally higher than those in GeSi. The room-temperature sheet electron mobility in GeSi is roughly 30% lower than that in Si for a given sheet electron concentration. We conclude that metastable GeSi on Si(100) amorphized by arsenic ions and recrystallized by solid-phase epitaxy cannot recover both its crystallinity and its pseudomorphic strain under rapid thermal annealing.


1992 ◽  
Vol 39 (1) ◽  
pp. 176-183 ◽  
Author(s):  
J.-L. Lee ◽  
L. Wei ◽  
S. Tanigawa ◽  
T. Nakagawa ◽  
K. Ohta ◽  
...  

1983 ◽  
Vol 24 ◽  
Author(s):  
C. W. White ◽  
G. C. Farlow ◽  
H. Naramoto ◽  
C. J. Mchargue ◽  
B. R. Appleton

ABSTRACTPhysical and structural property changes resulting from ion implantation and thermal annealing of α-A12O3 are reviewed. Emphasis is placed on damage production during implantation, damage recovery during thermal annealing, and impurity incorporation during thermal annealing. Physical and structural property changes caused by ion implantation and annealing are correlated with changes in the mechanical properties.


1994 ◽  
Vol 340 ◽  
Author(s):  
E.L. Allen ◽  
F.X. Zach ◽  
K.M. Yu ◽  
E.D. Bourret

ABSTRACTWe report on the effectiveness of proximity caps and PECVD Si3N4 caps during annealing of implanted ZnSe films. OMVPE ZnSe films were grown using diisopropylselenide (DIPSe) and diethylzinc (DEZn) precursors, then ion-implanted with 1 × 1014 cm−2 N (33 keV) or Ne (45 keV) at room temperature and liquid nitrogen temperature, and rapid thermal annealed at temperatures between 200°C and 850°C. Rutherford backscattering spectrometry in the channeling orientation was used to investigate damage recovery, and photoluminescence spectroscopy was used to investigate crystal quality and the formation of point defects. Low temperature implants were found to have better luminescence properties than room temperature implants, and results show that annealing time and temperature may be more important than capping material in determining the optical properties. The effects of various caps, implant and annealing temperature are discussed in terms of their effect on the photoluminescence spectra.


1983 ◽  
Vol 27 ◽  
Author(s):  
D. I. Potter ◽  
M. Ahmed ◽  
S. Lamond

ABSTRACTThe chemical and microstructural changes caused by the direct implantation of solutes into metals are examined. The particular case involving Al+-ion implantation into nickel is treated in detail. Chemical composition profiles measured using Auger spectroscopy and Rutherford backscattering, and average near-surface chemical composition measured using an analytical electron microscope, are compared with model calculations. The microstructures that develop during implantation are investigated using transmission electron microscopy. For low fluences implanted near room temperature, these microstructures contain dislocations and dislocation loops. Dislocation loops, dislocations, and voids result from implantations at temperatures near 500°C. Higher fluences at these elevated temperatures produce precipitates when the composition of implanted solute lies in a two-phase region of the phase diagram. Implanted concentrations corresponding to intermetallic compounds produce continuous layers of these compounds. Room temperature, as compared to elevated temperature, implantation may produce the same phases at the appropriate concentrations, e.g. β'-NiAl, or different phases, depending on the relative stability of the phases involved.


Sign in / Sign up

Export Citation Format

Share Document