Processing of Y1Ba2Cu3O7−x Superconducting Thin Films on GaAs Substrates with Double Buffer Layers

1991 ◽  
Vol 235 ◽  
Author(s):  
Sang Yeol Lee ◽  
Quanxi Jia ◽  
Wayne A. Anderson ◽  
David T. Shaw

ABSTRACTHigh temperature superconducting Y1Ba2Cu3O7−x(YBCO) thin films have been grown on GaAs substrates by in situ laser deposition with a double buffer layer of yttrium-stabilized ZrO2(YSZ)/Si3N4. A barrier layer using a combination of YSZ/Si3N4 was used to grow high quality YBCO thin films without the degradation of the GaAs during YBCO film deposition. Strongly c-axis oriented superconducting YBCO thin films with a zero resistance temperature of 85.5 K and a critical current density of 1.9×103 A/cm2 at 77 K have been obtained. The electrical properties of the YBCO thin films were mainly dependent on YSZ buffer layer deposition condition.

1991 ◽  
Vol 236 ◽  
Author(s):  
Sang Yeol Lee ◽  
Quanxi Jia ◽  
Wayne A. Anderson ◽  
David T. Shaw

AbstractHigh temperature superconducting Y1Ba2Cu3O7-x(YBCO) thin films have been grown on GaAs substrates by in situ laser deposition with a double buffer layer of yttrium-stabilized ZrO2 (YSZ)/Si3N4. A barrier layer using a combination of YSZ/Si3N4 was used to grow high quality YBCO thin films without the degradation of the GaAs during YBCO film deposition. Strongly c-axis oriented superconducting YBCO thin films with a zero resistance temperature of 85.5 K and a critical current density of 1.9x103 A/cm2 at 77 K have been obtained. The electrical properties of the YBCO thin films were mainly dependent on YSZ buffer layer deposition condition.


1992 ◽  
Vol 285 ◽  
Author(s):  
P. Tiwari ◽  
T. Zheleva ◽  
J. Narayan

ABSTRACTWe have prepared high-quality superconducting YBa2Cu3O7−δ (YBCO) thin films on Si(100) with TiN as a buffer layer using in-situ multitarget deposition system. Both TiN and YBCO thin films were deposited sequentially by KrF excitner laser ( λ = 248 nm ) at substrate temperature of 650°C. Thin films were characterized using X-ray diffraction (XRD), four-point-probe ac resistivity, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Rutherford backscattering (RBS). The TiN buffer layer was epitaxial and the epitaxial relationship was found to be cube on cube with <100> TiN // <100> Si. YBCO thin films on Si with TiN buffer layer showed the transition temperature of 90–92K with Tco (zero resistance temperature) of ∼84K. We have found that the quality of the buffer layer is very important in determining the superconducting transition temperature of the thin film. The effects of processing parameters and the correlation of microstructural features with superconducting properties are discussed indetail.


1994 ◽  
Vol 341 ◽  
Author(s):  
Gun Yong Sung ◽  
Jeong Dae Suh ◽  
Sahn Nahm

AbstractAn a-axis oriented YBa2Cu3O7-x (YBCO) thin film exhibiting zero resistance at 83 K and critical current density of 7.9x103 A/cm2 at 62 K was obtained on an 180 nm - thick PrBa2Cu3 O7-xx(PBCO) buffered SrTiO3(100) substrate by two step pulsed laser deposition (PLD). The volume fraction of a-axis orientation and the crystallinity(Xmin) of the 150 nm-thick YBCO thin films were increased with increasing the thickness of PBCO buffer layer, which was varied friom 0 nm to 180 nm. It is concluded that the thickness of PBCO buffer layer is one of the important parameters to control the structural and superconducting properties of the a-axis oriented YBCO thin films using the PBCO buffer layers.


1994 ◽  
Vol 341 ◽  
Author(s):  
M. Lorenz ◽  
H. Hochmuth ◽  
H. Börner ◽  
D. Natusch ◽  
K. Kreher

AbstractAn arrangement for large area PLD on 3-inch wafers is proposed. In order to get a homogeneous stoichiometry and thickness distribution and small variations of superconducting properties on the 3-inch diameter, the substrate is foreseen to be rotated and additionally laterally moved up to 45 mm during deposition whereas the laser plume remains fixed.YSZ buffer layers showed thickness homogeneity of 1% within 10 mm, of 4% within 2 inch and of 8% within 3 inch diameter, respectively. For in-situ deposited YBCO thin films on r-plane sapphire with YSZ buffer layer we inductively measured within 3 inch diameter values of the critical temperature Tc(90%) from 85.9 K to 86.7 K and values of the critical current density jc(77 K) from 1 × 106 to 2 × 106 A/cm2. However, up to now the degree of epitaxy of the YBCO thin films on r-plane sapphire with YSZ buffer layer is lower compared to YBCO on MgO(100) as determined by Raman spectroscopy. Nevertheless, large area PLD seems to be a very promising technique for homogeneous coating of 3-inch wafers by epitaxial oxide thin films.


1996 ◽  
Vol 260 (1-2) ◽  
pp. 111-116 ◽  
Author(s):  
V. Boffa ◽  
T. Petrisor ◽  
L. Ciontea ◽  
U. Gambardella ◽  
S. Barbanera

Nanomaterials ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2434
Author(s):  
Aaron J. Austin ◽  
Elena Echeverria ◽  
Phadindra Wagle ◽  
Punya Mainali ◽  
Derek Meyers ◽  
...  

Silica nanosprings (NS) were coated with gallium nitride (GaN) by high-temperature atomic layer deposition. The deposition temperature was 800 °C using trimethylgallium (TMG) as the Ga source and ammonia (NH3) as the reactive nitrogen source. The growth of GaN on silica nanosprings was compared with deposition of GaN thin films to elucidate the growth properties. The effects of buffer layers of aluminum nitride (AlN) and aluminum oxide (Al2O3) on the stoichiometry, chemical bonding, and morphology of GaN thin films were determined with X-ray photoelectron spectroscopy (XPS), high-resolution x-ray diffraction (HRXRD), and atomic force microscopy (AFM). Scanning and transmission electron microscopy of coated silica nanosprings were compared with corresponding data for the GaN thin films. As grown, GaN on NS is conformal and amorphous. Upon introducing buffer layers of Al2O3 or AlN or combinations thereof, GaN is nanocrystalline with an average crystallite size of 11.5 ± 0.5 nm. The electrical properties of the GaN coated NS depends on whether or not a buffer layer is present and the choice of the buffer layer. In addition, the IV curves of GaN coated NS and the thin films (TF) with corresponding buffer layers, or lack thereof, show similar characteristic features, which supports the conclusion that atomic layer deposition (ALD) of GaN thin films with and without buffer layers translates to 1D nanostructures.


2011 ◽  
Vol 287-290 ◽  
pp. 1837-1840 ◽  
Author(s):  
Byung Woo Gil ◽  
Sung Eui Lee ◽  
Hee Chul Lee

The effects of oxide buffer layers on the optical and electrical properties of sputtered Gallium-doped zinc oxide (GZO) films were intensively investigated for developing the electrodes of photonic devices, which demand high optical transmittance and low resistivity. The use of Al2O3 and SiO2 buffer layers could increase transmittance of GZO films to 90.69% around the wavelength of 550 nm by controlling the optical spectrum. The resistivity of the deposited GZO films was much dependent on the deposition condition of O2 ratio during buffer layer deposition. It is considered that the carrier mobility of GZO films on SiO2 buffer is highly related to the lattice crystallinity of SiO2 and GZO films. In contrast, on the Al2O3 buffer layer, rough surface morphology could increase the resistivity of GZO films due to the doping effect of diffused Al atoms.


2001 ◽  
Vol 7 (S2) ◽  
pp. 1276-1277
Author(s):  
Y. Akin ◽  
R.E. Goddard ◽  
W. Sigmund ◽  
Y.S. Hascicek

Deposition of highly textured ReBa2Cu3O7−δ (RBCO) films on metallic substrates requires a buffer layer to prevent chemical reactions, reduce lattice mismatch between metallic substrate and superconducting film layer, and to prevent diffusion of metal atoms into the superconductor film. Nickel tapes are bi-axially textured by cold rolling and annealing at appropriate temperature (RABiTS) for epitaxial growth of YBa2Cu3O7−δ (YBCO) films. As buffer layers, several oxide thin films and then YBCO were coated on bi-axially textured nickel tapes by dip coating sol-gel process. Biaxially oriented NiO on the cube-textured nickel tape by a process named Surface-Oxidation- Epitaxy (SEO) has been introduced as an alternative buffer layer. in this work we have studied in situ growth of nickel oxide by ESEM and hot stage.Representative cold rolled nickel tape (99.999%) was annealed in an electric furnace under 4% hydrogen-96% argon gas mixture at 1050°C to get bi-axially textured nickel tape.


2014 ◽  
Vol 881-883 ◽  
pp. 1117-1121 ◽  
Author(s):  
Xiang Min Zhao

ZnO thin films with different thickness (the sputtering time of AlN buffer layers was 0 min, 30 min,60 min, and 90 min, respectively) were prepared on Si substrates using radio frequency (RF) magnetron sputtering system.X-ray diffraction (XRD), atomic force microscope (AFM), Hall measurements setup (Hall) were used to analyze the structure, morphology and electrical properties of ZnO films.The results show that growth are still preferred (002) orientation of ZnO thin films with different sputtering time of AlN buffer layer,and for the better growth of ZnO films, the optimal sputtering time is 60 min.


2006 ◽  
Vol 326-328 ◽  
pp. 689-692
Author(s):  
Seung Jae Moon

The thermal conductivity of amorphous silicon (a-Si) thin films is determined by using the non-intrusive, in-situ optical transmission measurement. The thermal conductivity of a-Si is a key parameter in understanding the mechanism of the recrystallization of polysilicon (p-Si) during the laser annealing process to fabricate the thin film transistors with uniform characteristics which are used as switches in the active matrix liquid crystal displays. Since it is well known that the physical properties are dependent on the process parameters of the thin film deposition process, the thermal conductivity should be measured. The temperature dependence of the film complex refractive index is determined by spectroscopic ellipsometry. A nanosecond KrF excimer laser at the wavelength of 248 nm is used to raise the temperature of the thin films without melting of the thin film. In-situ transmission signal is obtained during the heating process. The acquired transmission signal is fitted with predictions obtained by coupling conductive heat transfer with multi-layer thin film optics in the optical transmission measurement.


Sign in / Sign up

Export Citation Format

Share Document