Effects of Rapid Thermal Annealing on SiNx Capped MBE GaAs

1992 ◽  
Vol 262 ◽  
Author(s):  
Akira Ito ◽  
Akira Usami ◽  
Hiroyuki Ueda ◽  
Hiroyuki Kano ◽  
Takao Wada

ABSTRACTEffects of rapid thermal annealing (RTA) with a SiNx encapsulant on molecular beam epitaxial GaAs are studied with deep level transient spectroscopy (DLTS) measurements and x-ray photoelectron spectroscopy (XPS) measurements. The RTA was performed at various temperatures form 800°C to 1100°C for 6sec. The electron trap EL2 is produced by the RTA above 850°C The EL2 depth profile produced after the RTA is fitted with a complementary error function. The SiNx cap layer is more effective to prevent the formation of the EL2 than the SiO* cap layer during the RTA, because the critical temperature of the SiNx cap where the EL2 concentration starts to increase is higher than that of the SiOx cap. Slight increase of the oxidized Ga atoms is observed after the RTA near the cap surface. The enhancement of the EL2 trap is discussed considering the outdiffusion of Ga atoms into the cap layer during the RTA.

1995 ◽  
Vol 387 ◽  
Author(s):  
Po-ching Chen ◽  
Klaus Yung-jane Hsu ◽  
Joseph J. Loferski ◽  
Huey-liang Hwang

AbstractMicrowave afterglow plasma oxidation at a low temperature (600 °C ) and rapid thermal annealing (RTA) were combined to grow high quality ultra-thin dielectrics. This new approach has a low thermal budget. The mid-gap interface state density of oxides pretreated in N2O plasma was decreased to about 5×1010 cm−2eV−1 after rapid thermal annealing at 950 °C.It was found that RTA is very effective for relieving the oxide stress and reducing the interface state density. Nitrogen incorporated in oxides by the N2O plasma pretreatment of the Si surface helped to reduce the interface state density. Microstructures of ultra-thin oxide grown by microwave afterglow oxidation with or without RTA were revealed by extended-X-ray-absorption-finestructure (EXAFS) and X-ray photoelectron spectroscopy (XPS) analysis.


1989 ◽  
Vol 4 (2) ◽  
pp. 241-243 ◽  
Author(s):  
Yutaka Tokuda ◽  
Nobuji Kobayashi ◽  
Yajiro Inoue ◽  
Akira Usami ◽  
Makoto Imura

The annihilation of thermal donors in silicon by rapid thermal annealing (RTA) has been studied with deep-level transient spectroscopy. The electron trap AO (Ec – 0.13 eV) observed after heat treatment at 450 °C for 10 h, which is identified with the thermal donor, disappears by RTA at 800 °C for 10 s. However, four electron traps, A1 (Ec 0.18 eV), A2 (Ec – 0.25 eV), A3 (Ec – 0.36 eV), and A4 (Ec – 0.52 eV), with the concentration of ∼1012 cm−3 are produced after annihilation of thermal donors by RTA. These traps are also observed in silicon which receives only RTA at 800 °C. This indicates that traps A1–A4 are thermal stress induced or quenched-in defects by RTA, not secondary defects resulting from annealing of thermal donors.


1989 ◽  
Vol 147 ◽  
Author(s):  
S. E. Beck ◽  
R. J. Jaccodine ◽  
C. Clark

AbstractRapid thermal annealed tail regions of shallow junction arsenic implants into silicon have been investigated. Tail profiles have been roduced by an anodic oxidation and stripping technique after implantation to fluences of 1014 to 1016 cm−2 and by implanting through a layer of silicon dioxide. Electrical activation and diffusion have been achieved by rapid thermal annealing in the temperature range of 800 to 1100 °C. Electrically active defects remain after annealing. Spreading resistance and deep level transient spectroscopy results are presented. The diffusion of the arsenic tail is discussed and compared with currently accepted models.


1991 ◽  
Vol 224 ◽  
Author(s):  
Takahide Sugiyama ◽  
Akira Usami ◽  
Akira Ito ◽  
Taichi Natori ◽  
Yutaka Tokuda ◽  
...  

AbstractVariations of thermal donors (TDs) in highly phosphorus-diffused n-type silicon wafers (diffused wafer) have been studied with deep-level transient spectroscopy and capacitance-voltage measurements. The introduction and annihilation of TDs have been performed with heat treatment at 450°C and rapid thermal annealing (RTA) in the temperature range 600-900°C,respectively. In diffused floating zone-grown (FZ) silicon wafer, TDs were observed. It is thought that oxygen diffuses into FZ silicon during the diffusion process, since no TDs are generally formed in FZ silicon for the low oxygen concentration. The behavior of TDs in diffused wafer corresponded with that in oxygen-rich bulk silicon. TDs were completely annihilated by RTA at 700 and 800°C for the as-diffused wafers and the heat-treated ones at 450°C for 24 h, respectively, and the annihilation rate for the as-diffused wafers was fast, as compare to that for the heat-treated ones. This results may be caused by difference in the total concentration and cluster size of TDs.


1991 ◽  
Vol 224 ◽  
Author(s):  
Akira Usami ◽  
Taichi Natori ◽  
Akira Ito ◽  
Takahide Sugiyama ◽  
Seiya Hirota ◽  
...  

AbstractIntroduction of oxygen during thermal oxidation and production of defects by rapid thermal annealing (RTA) in n-type epitaxial Si layers were studied with deep-level transient spectroscopy measurements. We use oxygen-related thermal donors (TDs) as a monitor for introduction of oxygen in silicon epitaxial layers. It is found that oxygen is introduced from the substrate into the epitaxial layer after thermal annealing. The TD was almost annihilated by RTA at .700°C. However, a shallow trap (Ec−0.073±0.005 eV) was induced by RTA.


1987 ◽  
Vol 92 ◽  
Author(s):  
M. Levinson ◽  
C. A. Armiento ◽  
S. S. P. Shah

ABSTRACTThe point defect reactions in GaAs by which ion implant damage is removed and implanted dopants are activated remain poorly understood. Deep level capacitance transient spectroscopy (DLTS) has been used to study the effects of rapid thermal annealing (RTA) on Si-implant damage generated defects. In low implant dose samples, the results of RTA are similar to those of furnace anneals and also agree well with previous reports of boron-implanted and neutron-irradiated material. In contrast to this, higher dose samples showed much smaller than expected apparent defect concentrations. After RTA, very broad DLTS spectra and relatively little EL2 or EL3 defect formation was observed. The significance of these results with regard to the mechanisms of dopant activation and damage removal are discussed.


1995 ◽  
Vol 378 ◽  
Author(s):  
Yoshimaro Fujii ◽  
Akira Usami ◽  
Katsuhiro Fujiyoshi ◽  
Hideaki Yoshida ◽  
Masaya Ichimura

AbstractElectrical properties of PIN photodiodes fabricated on the bonded silicon on insulator (SOI) wafers annealed at 900°C for 5 seconds were evaluated in order to investigate the effect of rapid thermal annealing (RTA) on SOI wafers. Traps in the SOI layers with different thicknesses (10,30,100 μm) were investigated using the deep level transient spectroscopy (DLTS) method. In the SOI layer with a thickness of 100 μm, a trap with deep energy level (about Ec-Et=0.55 eV) was observed and the concentration of the trap decreased from 5.0 × 1011 cm−3 to 1.5 × 1011 cm−3 by RTA. For PIN photodiodes on the 100 μm-thick SOI layer, the dark current decreased from 2 × 10−9 A to 6 × 10−10 A, and sensitivity uniformity for a 35 μmφ light spot and spectral responses were both improved by RTA. Lifetimes were obtained from open-circuit voltage (Voc) decay curves for 940 nm and 655 nm light, and they increased from 37 μs to 57 μs and from 47 μs to 62 μs, respectively, by RTA. For thinner SOI layers (thickness=10, 30 μm), PIN photodiodes have good uniformity and low dark current, and their characteristics were not changed by RTA.


1988 ◽  
Vol 144 ◽  
Author(s):  
G. Marrakchi ◽  
G. Chaussemy ◽  
A. Laugier ◽  
G. Guillot.

ABSTRACTRapid Thermal Annealing (RTA) effects on generation or annihilation of deep levels in GaAs have been investigated by Deep Level Transient Spectroscopy (DLTS). Capping proximity technique using three annealing configurations are employed to anneal Liquid Encapsulated Czochralski (LEC) and Bridgman (B) substrates, or Vapor Phase Epitaxy (VPE) and Liquid Phase Epitaxy (LPE) layers. The RTA treatment is performed from 800 to 950°C for two annealing times ( 3 and 10s).The DLTS data show that the evolution of the native defects depends on the GaAs growth method and also the annealing configuration. We observe the appearance of two new electron traps named RL1 and RL2 induced by the RTA process which depend on the kind of substrate: RL1 and RL2 are created in LEC material while only RL1 is detected in B material. A general comparison of our results with others reported in the literature show that these new electron traps are related to the change of stoichiometry at the GaAs surface and also depend on the existence of specific native defects in the starting GaAs material. It is proposed that the creation of RL1 is related to the EL6 native defect and discuss a possible physical origin for this level. We also propose that RL2 and EL5 originate from the same defect and suggest the divacancy VGaVAs as a possible origin for this trap.


1996 ◽  
Vol 426 ◽  
Author(s):  
Y. A. Cho ◽  
W. J. Nam ◽  
H. S. Kim ◽  
G. Y. Yeom ◽  
J. K. Yoon ◽  
...  

AbstractRapid thermal annealing (RTA) was applied to anneal polycrystalline CdTe thin films evaporated on CdS/ITO substrate and the effects of rapid thermal annealing temperatures and gas environments were studied. X-ray diffractometer (XRD), X-ray photoelectron spectroscopy(XPS), energy dispersive X-ray spectroscopy(EDX), cross-sectional transmission microscopy(TEM), and micro-EDX in TEM were used to characterize physical and chemical properties of rapid thermal annealed CdTe thin films. Complete CdTe/CdS photovoltaic cells were fabricated and I-V characteristics of these cells were measured under the illumination. Results showed that the bulk composition of CdTe remained stoichiometric to 550°C in the air environment and surface composition became Cd-rich. Cross-sectional TEM and micro-EDX showed columnar grains and micro-twins remained even after RTA, however, sulfur content in rapid thermal annealed CdTe caused by sulfur diffusion from CdS during the annealing was much smaller than that by furnace annealing. Among the investigated RTA temperatures and gas environments, the cell made with CdTe annealed at 550°C in the air showed the best solar energy conversion efficiency.


1989 ◽  
Vol 146 ◽  
Author(s):  
Masayuki Katayama ◽  
Yutaka Tokuda ◽  
Nobuo Ando ◽  
Akio Kitagawa ◽  
Akira Usami ◽  
...  

ABSTRACTEffects of rapid thermal processing (RTP) on SiO2/GaAs interfaces have been studied with X-ray photoelectron spectroscopy, capacitance-voltage measurements and deep-level transient spectroscopy. SiO2 films of 50, 200 and 1250 nim thickness have been deposited on GaAs. RTP has been performed at 760 and 910°C for 9 s. The rapid diffusion of Ga through the SiO2 film occurs, and the As loss and the formation of the As layer near the interface are observed. The decrease of the carrier concentration occurs in all RTP samples. Five electron traps EAI (Ec – 0.27 eV), EA2 (Ec – 0.32 eV), EA3 (Ec – 0.47 eV), EA4 (Ec – 0.58 eV) and EL2 (Ec – 0.78 eV) are produced by RTP. It is considered that the production of the trap EL2 is closely related to the Ga outdiffusion into the SiO2 film and the As indiffusion from the pile-up of elemental As near the interface. Effects of SiO2 film thickness on RTP-SiO2/GaAs are also reported.


Sign in / Sign up

Export Citation Format

Share Document