Thermal Stability of Ir-Silicide/SiGe Layers Grown in a Dual Electron Gun Chamber at Ultra-High Vacuum (Extended Abstract)

1994 ◽  
Vol 299 ◽  
Author(s):  
C. K. Chung ◽  
J. Hwang

AbstractHeteroepitaxial Ir-silicide/SiGe layers on the top of p-Si(100) have been achieved at a substrate temperature of 450 °C. The co-deposited Ir-silicide layer was determined to be Ir3Si4 with four types of epitaxial modes. Thermal stability of the film was examined by using Auger electron spectroscopy and X-ray diffractometer. The Ir3Si4/SiGe layers were stable as annealed at 550 °C for 20 sec in a rapid thermal annealing furnace, while interdiffusion between Ir3Si4 and SiGe occurs at a temperature of 750 deg;C or higher for 20 sec. The traditional guard-ring fabrication process should be performed before epitaxial films deposition due to this thermal instability.

1990 ◽  
Vol 182 ◽  
Author(s):  
J. R. Phillips ◽  
P. Revesz ◽  
J. O. Olowolafe ◽  
J. W. Mayer

AbstractThe thermal stability of Co silicide on single crystal and polycrystalline Si has been investigated. Co films were evaporated onto (100) Si and undoped polycrystalline Si and annealed in vacuum. Resulting silicide films were examined using Rutherford backscattering spectroscopy, scanning electron microscopy, electron—induced x—ray spectroscopy, and sheet resistivity measurements. We find that CoSi2 on single crystal (100) Si remains stable through 1000ºC. In contact with undoped polycrystalline Si, intermixing begins at temperatures as low as 650ºC for 30min annealing. The Co silicide and Si layers are intermixed after 750ºC 30min annealing, giving islands of Si surrounded by silicide material, with both components extending from the surface down to the underlying oxide layer. The behavior of CoSi2 contrasts with results reported for TiSi2 which agglomerates on single crystal Si around 900ºC but is stable on polycrystalline silicon as high as 800ºC. Resistivity measurements show that the Co silicide remained interconnected despite massive incursion by Si into the silicide layer.


1989 ◽  
Vol 160 ◽  
Author(s):  
P.J. Wang ◽  
B.S. Meyerson ◽  
P.M. Fahey ◽  
F. LeGoues ◽  
G.J. Scilla ◽  
...  

AbstractThe thermal stability of Si/Si0.85Ge0.15/Si p-type modulation doped double heterostructures grown by the Ultra High Vacuum/ Chemical Vapor Deposition technique has been examined by Hall measurement, transmission electron microscopy, secondary ion mass spectroscopy, and Raman spectroscopy. As deposited heterostructures showed two-dimensional hole gas formation at the abrupt Si/SiGe and SiGe/Si interfaces. Annealing at 800 °C. for 1 hr. caused the diffusion of boron acceptors to the heterointerfaces, degrading the hole mobilities observed in the two dimensional hole gas. Rapid redistribution of boron, causing a loss of the 2 dimensional carrier behavior, was observed after a 900 °C, 0.5 hr. anneal. Neither Ge interdiffusion nor the generation of misfit dislocations were observed in the annealed heterostructures, evincing the defect-free crystal quality of these as-grown strained heteroepitaxial layers. The superior stability of these heterostructures have strong positive implications for Si:Ge heterojunction devices.


1990 ◽  
Vol 181 ◽  
Author(s):  
J. R. Phillips ◽  
P. Revesz ◽  
J. O. Olowolafe ◽  
J. W. Mayer

ABSTRACTThe thermal stability of Co silicide on single crystal and polycrystalline Si has been investigated. Co films were evaporated onto (100) Si and undoped polycrystalline Si and annealed in vacuum. Resulting silicide films were examined using Rutherford backscattering spectroscopy, scanning electron microscopy, electron-induced x-ray spectroscopy, and sheet resistivity measurements. We find that CoSi2 on single crystal (100) Si remains stable through 1000°C. In contact with undoped polycrystalline Si, intermixing begins at temperatures as low as 650°C for 30min annealing. The Co silicide and Si layers are intermixed after 750°C 30min annealing, giving islands of Si surrounded by silicide material, with both components extending from the surface down to the underlying oxide layer. The behavior of CoSi2 contrasts with results reported for TiSi2 which agglomerates on single crystal Si around 900°C but is stable on polycrystalline silicon as high as 800°C. Resistivity measurements show that the Co silicide remained interconnected despite massive incursion by Si into the silicide layer.


2018 ◽  
Vol 509 ◽  
pp. 408-416 ◽  
Author(s):  
Lei Lu ◽  
Fangfang Li ◽  
Hong Xiao ◽  
Yin Hu ◽  
Lizhu Luo ◽  
...  

2020 ◽  
Vol 10 (01n02) ◽  
pp. 2060018
Author(s):  
E. M. Bayan ◽  
T. G. Lupeiko ◽  
L. E. Pustovaya ◽  
M. G. Volkova

Sn-doped TiO2 nanomaterials were synthesized by sol–gel method. It was shown the phase compositions and phase transitions change with the introduction of different tin amounts (0.5–20[Formula: see text]mol.%). X-ray powder diffraction was used to study the effect of different tin amounts on the anatase–rutile phase transition. It was found that the introduction of ions increases the thermal stability of anatase modifications. The material’s photocatalytic activity was studied in reaction with a model pollutant (methylene blue) photodegradation under UV and visible light activation. The best photocatalytic properties were shown for material, which contains 5[Formula: see text]mol.% of Sn.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Tae Hyeong Kim ◽  
Hyeji Kim ◽  
Hyo Jun Jang ◽  
Nara Lee ◽  
Kwang Hyun Nam ◽  
...  

AbstractIn the study reported herein, silver-coated copper (Ag/Cu) powder was modified with alkanethiols featuring alkyl chains of different lengths, namely butyl, octyl, and dodecyl, to improve its thermal stability. The modification of the Ag/Cu powders with adsorbed alkanethiols was confirmed by scanning electron microscopy with energy dispersive spectroscopy, X-ray photoelectron spectroscopy, and thermogravimetric analysis. Each powder was combined with an epoxy resin to prepare an electrically conductive film. The results confirmed that the thermal stability of the films containing alkanethiol-modified Ag/Cu powders is superior to that of the film containing untreated Ag/Cu powder. The longer the alkyl group in the alkanethiol-modified Ag/Cu powder, the higher the initial resistance of the corresponding electrically conductive film and the lower the increase in resistance induced by heat treatment.


2012 ◽  
Vol 14 (4) ◽  
pp. 043010 ◽  
Author(s):  
D Nilsson ◽  
F Uhlén ◽  
J Reinspach ◽  
H M Hertz ◽  
A Holmberg ◽  
...  

1999 ◽  
Vol 567 ◽  
Author(s):  
Masayuki Suzuki ◽  
Yoji Saito

ABSTRACTWe tried direct oxynitridation of silicon surfaces by remote-plasma-exited nitrogen and oxygen gaseous mixtures at 700°C in a high vacuum. The oxynitrided surfaces were investigated with in-situ X-ray photoelectron spectroscopy. With increase of the oxynitridation time, the surface density of nitrogen gradually increases, but that of oxygen shows nearly saturation behavior after the rapid increase in the initial stage. We also annealed the grown oxynitride and oxide films to investigate the role of the contained nitrogen. The desorption rate of oxygen from the oxynitride films is much less than that from oxide films. We confirmed that nitrogen stabilizes the thermal stability of these oxynitride films.


1998 ◽  
Vol 514 ◽  
Author(s):  
M. F. Wu ◽  
A. Vantomne ◽  
S. Hogg ◽  
H. Pattyn ◽  
G. Langouche ◽  
...  

ABSTRACTThe Nd-disilicide, which exists only in a tetragonal or an orthorhombic structure, cannot be grown epitaxially on a Si(111) substrate. However, by adding Y and using channeled ion beam synthesis, hexagonal Nd0.32Y0.68Si1.7 epilayers with lattice constant of aepi = 0.3915 nm and cepi = 0.4152 nm and with good crystalline quality (χmin of Nd and Y is 3.5% and 4.3 % respectively) are formed in a Si(111) substrate. This shows that the addition of Y to the Nd-Si system forces the latter into a hexagonal structure. The epilayer is stable up to 950 °C; annealing at 1000 °C results in partial transformation into other phases. The formation, the structure and the thermal stability of this ternary silicide have been studied using Rutherford backscattering/channeling, x-ray diffraction and transmission electron microscopy.


2021 ◽  
Vol 875 ◽  
pp. 116-120
Author(s):  
Muhammad Alamgir ◽  
Faizan Ali Ghauri ◽  
Waheed Qamar Khan ◽  
Sajawal Rasheed ◽  
Muhammad Sarfraz Nawaz ◽  
...  

In this study, the effect of SBR concentration (10 Phr, 20 Phr & 30 Phr ) on the thermal behavior of EPDM/SBR blends was studied. Thermogravimetric analysis (TGA) was used to check weight loss of samples as function of temperature by heating upto 600°C. X-ray diffraction (XRD) was performed to determine quality and % crystallinity of the elastomer blends. It was seen that % crystallinity improved with an increase in the content of SBR in EPDM/SBR blends. TGA revealed that the thermal stability of EPDM/SBR blends has improved by 17% than neat EPDM. Carbon nano-coatings produced by sputtering have no beneficial influence on thermal behaviour of elastomers.


Sign in / Sign up

Export Citation Format

Share Document