In-Situ Dry Etching of InP Using Phosphorus Tri-Chloride and Re-Growth Inside a Chemical Beam Epitaxial Growth Chamber

1993 ◽  
Vol 300 ◽  
Author(s):  
K M. Kapre ◽  
W. T. Tsang ◽  
P. F. Sciortino

ABSTRACTWe have extended the capability and versatility of a chemical beam epitaxial (CBE) system by demonstrating reactive chemical beam etching (RCBE) of InP using phosphorus tri chloride (PCl3)as the gaseous etching beam injected directly into the growth chamber. This permits instant switching from etching to growth (and vice versa) in the same run for the first time in CBE. We investigated RCBE of InP at various substrate temperatures between 400 °C and 580°C, under different PCl3 fluences, and etching conditions. Excellent surface morphology was obtained at high temperatures (> 530°C - 570°C) and under an etching rate of < 6 Å/sec. We also found that upon addition of trimethylindium flow equivalent to a growth rate of 1 Å/sec during RCBE a dramatic improvement in surface morphology was obtained even at a high net etching rate of 10 Å/sec. The surface morphology obtained under such conditions is indistinguishable from that of the original substrate surface. Using Si02 as a mask, in-situ etching of laser mesas followed immediately by regrowth of blocking layers with excellent wetting characteristics was obtained.

2010 ◽  
Vol 645-648 ◽  
pp. 99-102 ◽  
Author(s):  
Kazutoshi Kojima ◽  
Sachiko Ito ◽  
Junji Senzaki ◽  
Hajime Okumura

We have carried out detailed investigations of 4H-SiC homoepitaxial growth on vicinal off-angled Si-face substrates. We found that the surface morphology of the substrate just after in-situ H2 etching was also affected by the value of the vicinal-off angle. Growth conditions consisting of a low C/Si ratio and a low growth temperature were effective in suppressing macro step bunching at the grown epilayer surface. We also demonstrated epitaxial growth without step bunching on a 2-inch 4H-SiC Si-face substrate with a vicinal off angle of 0.79o. Ni Schottky barrier diodes fabricated on an as-grown epilayer had a blocking voltage above 1000V and a leakage current of less than 5x10-7A/cm2. We also investigated the propagation of basal plane dislocation from the vicinal off angled substrate into the epitaxial layer.


2019 ◽  
Vol 954 ◽  
pp. 31-34
Author(s):  
Guo Guo Yan ◽  
Xing Fang Liu ◽  
Feng Zhang ◽  
Zhan Wei Shen ◽  
Wan Shun Zhao ◽  
...  

Homoepitaxial growths of 4H-SiC were performed on Si-face (0001) on-axis substrates in a SiH4-C2H4-H2-HCl system by using our home-made vertical hot wall CVD reactor. The influence mechanism of the growth temperature and C/Si ratio on the morphology and growth rate was studied. It is found that the steps in the epilayer become more clear with the increasing temperatures. The result indicates that the C/Si ratio window of on-axis epitaxial growth is very narrow. Only when the C/Si ratio was 1.2, a slightly improved surface morphology can be achieved. The results indicate that 4H-SiC epitaxial layers were obtained on on-axis substrates and the films were highly-oriented 4H-SiC.


2006 ◽  
Vol 966 ◽  
Author(s):  
Xing Gu ◽  
Natalia Izyumskaya ◽  
Vataliy Avrutin ◽  
Hadis Morkoç

ABSTRACTEpitaxial growth of PbO, TiO2 and ZrO2 has been achieved on MOCVD grown GaN template using oxides MBE with a reactive H2O2 oxygen source. In situ RHEED was used to monitor the growth in-situ. AFM was used to characterize the surface morphology of the thin PbO and ZrO2, which show streaky, 2-D RHEED patterns. XRD pattern indicates that the growth orientation of these oxides are PbO [111]//GaN [0002], ZrO2[100]//GaN [0002] and TiO2[200]//GaN[0002].


1996 ◽  
Vol 441 ◽  
Author(s):  
William Barvosa-Carter ◽  
Michael J. Aziz

AbstractWe report preliminary in-situ time-resolved measurements of the effect of uniaxial stress on solid phase epitaxial growth in pure Si (001) for the case of stress applied parallel to the amorphous-crystal interface. The growth rate is reduced by the application of uniaxial compression, in agreement with previous results. Additionally, the velocity continues to decrease with time. This is consistent with interfacial roughening during growth under stress, and is supported by both reflectivity measurements and cross-sectional TEM observations. We present a new kinetically-driven interfacial roughening mechanism which is consistent with our observations.


1996 ◽  
Vol 448 ◽  
Author(s):  
Y.M. Hsin ◽  
N. Y. Li ◽  
C. W. Tu ◽  
P. M. Asbeck

AbstractWe have studied the etching effect of AlxGa1-xAs (0≤ x ≤ 0.5) by trisdimethylaminoarsenic (TDMAAs) at different substrate temperatures, and the quality of the resulting etched/regrown GaAs interface. We find that the etching rate of AlxGa1-x As decreases with increasing Al composition, and the interface trap density of the TDMAAs etched/regrown interface can be reduced by about a factor of 10 as deduced from capacitance-voltage carrier profiles. A smooth surface morphology of GaAs with an interface state density of 1.4×l011 cm−2 can be obtained at a lower in-situ etching temperature of 550°C. Moreover, by using this in-situ etching the I-V characteristics of regrown p-n junctions of Al0.35Ga0.65As/Al0.25Ga0.75As and Al0.35Ga0.65As/GaAs can be improved.


2005 ◽  
Vol 483-485 ◽  
pp. 97-100 ◽  
Author(s):  
Hidekazu Tsuchida ◽  
Toshiyuki Miyanagi ◽  
Isaho Kamata ◽  
Tomonori Nakamura ◽  
Kunikaza Izumi ◽  
...  

In this paper, we investigated the density of basal plane dislocations (BPDs) in 4H-SiC epilayers grown on (0001) and (000-1). Re-polishing of the substrate surface, in-situ H2 etching and off-cut angle were found to influence the propagation of BPDs into the epilayers. The epitaxial growth on (000-1) substrates yields a relatively low density of BPDs compared to growth on (0001). The electrical characteristics of pn diodes were also investigated, and the suppressed forward degradation and high-voltage blocking performance were obtained in the use of the (000-1) epilayers.


1992 ◽  
Vol 271 ◽  
Author(s):  
William S. Rees ◽  
Yusuf S. Hascicek ◽  
Louis R. Testardi

ABSTRACTFilms of YBa2CU3O7-δ have been grown on 1” LaAlO3 by OMVPE utilizing M(tmhd)n (M = Ba, Cu: n = 2; M = Y: n = 3; tmhd = 2,2,6,6-tetramethylheptane-3,5-dionato) as the source materials in a cold wall, vertical rotating disk reactor. The resultant films were characterized by SEM, XRD, Tc, Jc, and surface profilometry measurements. Relative to laser ablated thin films, the surface morphology was determined to be virtually featureless. In-situ depositions at substrate temperatures of <700°C, employing nitrous oxide as the oxidizing reagent, produced annular irregularities in the electronic properties of these films. The highest quality was observed near the film's center, with a marked decay evident toward the exterior 7 mm perimeter of the coated wafer.


2013 ◽  
Vol 740-742 ◽  
pp. 157-160 ◽  
Author(s):  
Jawad ul Hassan ◽  
Axel Meyer ◽  
Semih Cakmakyapan ◽  
Ozgur Kazar ◽  
Jan Ingo Flege ◽  
...  

The evolution of SiC surface morphology during graphene growth process has been studied through the comparison of substrate surface step structure after in-situ etching and graphene growth in vacuum. Influence of in-situ substrate surface preparation on the properties of graphene was studied through the comparison of graphene layers on etched and un-etched substrates grown under same conditions.


2016 ◽  
Vol 858 ◽  
pp. 193-196 ◽  
Author(s):  
Yong Qiang Sun ◽  
Gan Feng ◽  
Jun Yong Kang ◽  
Wei Ning Qian ◽  
Li Ping Lv ◽  
...  

The large growth pits (LGPs) dependence of substrate quality, growth rate, and C/Si ratio have been discussed in the 4H-SiC epitaxial growth on 100 mm N-type 4H-SiC Si-face substrates misoriented by 4° toward [11-20] with a warm-wall planetary reactor. The formation and reduction of LGPs have been investigated by adjusting the growth process parameters. With the optimized process, the perfect surface morphology with lower LGPs density has been obtained on the high quality substrate.


Sign in / Sign up

Export Citation Format

Share Document