Grafting of Polymers to Solid Surfaces by using Immobilized Azoinitiators

1993 ◽  
Vol 304 ◽  
Author(s):  
O. Prucker ◽  
J. Rühe

AbstractThe covalent attachment of polymers such as polystyrene, polymethylmethacrylate and polyacrylonitrile to microparticulate silica and to silicon wafers through immobilized radical chain initiators (especially azocompounds) is described. The initiator is bonded to the surface using α,ω-substituted silanes, which have only one functional group at the silane head group.Up to 10 g of polymer per g of silica could be covalently bonded to the surface. The attached monolayers were characterized using diffuse reflectance FTIR spectroscopy, XPS and elemental analysis. After the cleaving off of the attached layers molecular weights up to 300.000 g/mol were measured. Transmission electron micrographs generated with an element specific imaging technique (ESI) clearly show a continuous, about 10 nm thick, polymer layer around the silica particles.

2006 ◽  
Vol 2006 ◽  
pp. 1-10 ◽  
Author(s):  
Bérangère Bailly ◽  
Anne-Carole Donnenwirth ◽  
Christèle Bartholome ◽  
Emmanuel Beyou ◽  
Elodie Bourgeat-Lami

Polystyrene (PS) chains with molecular weights comprised between 8000 and 64000g⋅mol-1and narrow polydispersities were grown from the surface of silica nanoparticles (Aerosil A200 fumed silica and Stöber silica, resp.) through nitroxide-mediated polymerization (NMP). Alkoxyamine initiators based on N-tert-butyl-1-diethylphosphono-2,2-dimethylpropyl nitroxide (DEPN) and carrying a terminal functional group have been synthesized in situ and grafted to the silica surface. The resulting grafted alkoxyamines have been employed to initiate the growth of polystyrene chains from the inorganic surface. The maximum grafting density of the surface-tethered PS chains was estimated and seemed to be limited by initiator confinement at the interface. Then, the PS-grafted Stöber silica nanoparticles were entrapped inside latex particles via miniemulsion polymerization. Transmission electron microscopy indicated the successful formation of silica-polystyrene core-shell particles.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1376
Author(s):  
Nao Nagatomo ◽  
Hisashi Oishi ◽  
Yutaka Kuwahara ◽  
Makoto Takafuji ◽  
Reiko Oda ◽  
...  

A chiral molecular gelation system, as a chiral host, was used to effectively realize enantioselectivity using the simple carboxylic acid functional group. For this purpose, an L-glutamic-acid-based lipidic amphiphile (G-CA) with a carboxylic head group was selected and its responsiveness to cationic guest molecules was investigated. The dispersion morphology of G-CA in its solution state was examined by confocal and transmission electron microscopies, while interactions between the G-CA, as the host system, and guest molecules were evaluated by UV-visible, circular dichroism, and fluorescence spectroscopies. As a result, enantioselectivity was effectively induced when G-CA formed highly ordered aggregates that provide negatively charged surfaces in which carboxyl groups are assembled in highly ordered states, and when the two cationic groups of the guest molecule are attached to this surface through multiple interactions.


Author(s):  
Henry S. Slayter

Electron microscopic methods have been applied increasingly during the past fifteen years, to problems in structural molecular biology. Used in conjunction with physical chemical methods and/or Fourier methods of analysis, they constitute powerful tools for determining sizes, shapes and modes of aggregation of biopolymers with molecular weights greater than 50, 000. However, the application of the e.m. to the determination of very fine structure approaching the limit of instrumental resolving power in biological systems has not been productive, due to various difficulties such as the destructive effects of dehydration, damage to the specimen by the electron beam, and lack of adequate and specific contrast. One of the most satisfactory methods for contrasting individual macromolecules involves the deposition of heavy metal vapor upon the specimen. We have investigated this process, and present here what we believe to be the more important considerations for optimizing it. Results of the application of these methods to several biological systems including muscle proteins, fibrinogen, ribosomes and chromatin will be discussed.


Author(s):  
Richard J. Spontak ◽  
Steven D. Smith ◽  
Arman Ashraf

Block copolymers are composed of sequences of dissimilar chemical moieties covalently bonded together. If the block lengths of each component are sufficiently long and the blocks are thermodynamically incompatible, these materials are capable of undergoing microphase separation, a weak first-order phase transition which results in the formation of an ordered microstructural network. Most efforts designed to elucidate the phase and configurational behavior in these copolymers have focused on the simple AB and ABA designs. Few studies have thus far targeted the perfectly-alternating multiblock (AB)n architecture. In this work, two series of neat (AB)n copolymers have been synthesized from styrene and isoprene monomers at a composition of 50 wt% polystyrene (PS). In Set I, the total molecular weight is held constant while the number of AB block pairs (n) is increased from one to four (which results in shorter blocks). Set II consists of materials in which the block lengths are held constant and n is varied again from one to four (which results in longer chains). Transmission electron microscopy (TEM) has been employed here to investigate the morphologies and phase behavior of these materials and their blends.


Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 850
Author(s):  
Donghyuk Kim ◽  
Byungkyu Ahn ◽  
Kihyun Kim ◽  
JongYeop Lee ◽  
Il Jin Kim ◽  
...  

Liquid butadiene rubber (LqBR) which used as a processing aid play a vital role in the manufacturing of high-performance tire tread compounds. However, the studies on the effect of molecular weight, microstructure, and functionalization of LqBR on the properties of compounds are still insufficient. In this study, non-functionalized and center-functionalized liquid butadiene rubbers (N-LqBR and C-LqBR modified with ethoxysilyl group, respectively) were synthesized with low vinyl content and different molecular weights using anionic polymerization. In addition, LqBR was added to the silica-filled SSBR compounds as an alternative to treated distillate aromatic extract (TDAE) oil, and the effect of molecular weight and functionalization on the properties of the silica-filled SSBR compound was examined. C-LqBR showed a low Payne effect and Mooney viscosity because of improved silica dispersion due to the ethoxysilyl functional group. Furthermore, C-LqBR showed an increased crosslink density, improved mechanical properties, and reduced organic matter extraction compared to the N-LqBR compound. LqBR reduced the glass transition temperature (Tg) of the compound significantly, thereby improving snow traction and abrasion resistance compared to TDAE oil. Furthermore, the energy loss characteristics revealed that the hysteresis loss attributable to the free chain ends of LqBR was dominant.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alejandro Lapresta-Fernández ◽  
Alfonso Salinas-Castillo ◽  
Luis Fermín Capitán-Vallvey

AbstractEncapsulation of magnetic nanoparticles (MNPs) of iron (II, III) oxide (Fe3O4) with a thermopolymeric shell of a crosslinked poly(2-(2-methoxyethoxy)ethyl methacrylate) P(MEO2MA) is successfully developed. Magnetic aggregates of large size, around 150–200 nm are obtained during the functionalization of the iron oxide NPs with vinyl groups by using 3-butenoic acid in the presence of a water soluble azo-initiator and a surfactant, at 70 °C. These polymerizable groups provide a covalent attachment of the P(MEO2MA) shell on the surface of the MNPs while a crosslinked network is achieved by including tetraethylene glycol dimethacrylate in the precipitation polymerization synthesis. Temperature control is used to modulate the swelling-to-collapse transition volume until a maximum of around 21:1 ratio between the expanded: shrunk states (from 364 to 144 nm in diameter) between 9 and 49 °C. The hybrid Fe3O4@P(MEO2MA) microgel exhibits a lower critical solution temperature of 21.9 °C below the corresponding value for P(MEO2MA) (bulk, 26 °C). The MEO2MA coating performance in the hybrid microgel is characterized by dynamic light scattering and transmission electron microscopy. The content of preformed MNPs [up to 30.2 (wt%) vs. microgel] was established by thermogravimetric analysis while magnetic properties by vibrating sample magnetometry.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Yang Liu ◽  
Hongtao Yu ◽  
Xie Quan ◽  
Shuo Chen

MoS2/CdS photocatalyst was fabricated by a hydrothermal method for H2production under visible light. This method used low toxic thiourea as a sulfur source and was carried out at 200°C. Thus, it was better than the traditional methods, which are based on an annealing process at relatively high temperature (above 400°C) using toxic H2S as reducing agent. Scanning electron microscopy and transmission electron microscopy images showed that the morphologies of MoS2/CdS samples were feather shaped and MoS2layer was on the surface of CdS. The X-ray photoelectron spectroscopy testified that the sample was composed of stoichiometric MoS2and CdS. The UV-vis diffuse reflectance spectra displayed that the loading of MoS2can enhance the optical absorption of MoS2/CdS. The photocatalytic activity of MoS2/CdS was evaluated by producing hydrogen. The hydrogen production rate on MoS2/CdS reached 192 μmol·h−1. This performance was stable during three repeated photocatalytic processes.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Beata Zielińska ◽  
Ewa Mijowska ◽  
Ryszard J. Kalenczuk

K-Ta mixed oxides photocatalysts have been prepared by impregnation followed by calcination. The influence of the reaction temperature (450°C–900°C) on the phase formation, crystal morphology, and photocatalytic activity in hydrogen generation of the produced materials was investigated. The detailed analysis has revealed that all products exhibit high crystallinity and irregular structure. Moreover, two different crystal structures of potassium tantalates such as KTaO3and K2Ta4O11were obtained. It was also found that the sample composed of KTaO3and traces of unreacted Ta2O5(annealed at 600°C) exhibits the highest activity in the reaction of photocatalytic hydrogen generation. The crystallographic phases, optical and vibronic properties were examined by X-ray diffraction (XRD) and diffuse reflectance (DR) UV-vis and resonance Raman spectroscopic methods, respectively. Morphology and chemical composition of the produced samples were studied using a high-resolution transmission electron microscope (HR-TEM) and an energy dispersive X-ray spectrometer (EDX) as its mode.


2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
M. S. Mayeed ◽  
T. Kato

Applying the reptation algorithm to a simplified perfluoropolyether Z off-lattice polymer model an NVT Monte Carlo simulation has been performed. Bulk condition has been simulated first to compare the average radius of gyration with the bulk experimental results. Then the model is tested for its ability to describe dynamics. After this, it is applied to observe the replenishment of nanoscale ultrathin liquid films on solid flat carbon surfaces. The replenishment rate for trenches of different widths (8, 12, and 16 nms for several molecular weights) between two films of perfluoropolyether Z from the Monte Carlo simulation is compared to that obtained solving the diffusion equation using the experimental diffusion coefficients of Ma et al. (1999), with room condition in both cases. Replenishment per Monte Carlo cycle seems to be a constant multiple of replenishment per second at least up to 2 nm replenished film thickness of the trenches over the carbon surface. Considerable good agreement has been achieved here between the experimental results and the dynamics of molecules using reptation moves in the ultrathin liquid films on solid surfaces.


Sign in / Sign up

Export Citation Format

Share Document