Sputter Etching Effect on Magnetic Properties in TaOx/TbFeCo/Ag Layered Films

1993 ◽  
Vol 318 ◽  
Author(s):  
Takumi Shimamori ◽  
Hidemi Yoshida ◽  
Yoshimitsu Kobayashi

ABSTRACTSputter etching effect on magnetic properties was investigated in TaOx/TbFeCo/Ag layered films. With sputter etching, smooth interfaces of about lnm roughness were obtained. In films with smooth interfaces, magnetization was stabilized and magnetization reversal was sharpened at around the Curie temperature. As a result, recorded marks were stabilized, and the media became sensitive to the magnetic field for writing. 49dB was obtained as C/N even at 0.45μm mark length, which is sufficient for digital recording.

2011 ◽  
Vol 687 ◽  
pp. 500-504
Author(s):  
S. X. Xue ◽  
S.S. Feng ◽  
P. Y. Cai ◽  
Q T Li ◽  
H. B. Wang

Ni54Mn21-xFexGa25(x=0,1,3,5,7,9)polycrystalline alloys were prepared by the technique of directional solidification and the effect of substituting Fe for Mn on the martensitic transformation and mechanical properties of the alloys was analyzed. It was found that the Curie temperature increased with increasing substitution while the martensitic transformation temperature decreased. The Fe-doped Ni54Mn21Ga25 alloys exhibit excellent magnetic properties at room temperature; the typical Ni54Mn20Fe1Ga25 alloy shows a large magnetic-induced-strain of -1040 ppm at a magnetic field of 4000 Oe.


1999 ◽  
Vol 32 (1-4) ◽  
pp. 289-294
Author(s):  
V. A. Lukshina ◽  
N. V. Dmitrieva ◽  
A. P. Potapov

For nanocrystalline alloy Fe73.5Cu1Nb3Si13.5B9 thermomechanical treatment was carried out simultaneously with nanocrystallizing annealing (1) or after it (2). It was shown that a change in magnetic properties for the case 1 is essentially greater than for the case 2. Complex effect of thermomagnetic and thermomechanical treatments on magnetic properties was studied in the above-mentioned nanocrystalline alloy as well as in the amorphous alloy Fe5Co70.6Si15B9.4., During the annealings both field and stress were aligned with the long side of the specimens. It was shown that the magnetic field, AC or DC, decreases an effect of loading. Moreover, the magnetic field, AC or DC, applied after stress-annealing can destroy the magnetic anisotropy already induced under load.


1996 ◽  
Vol 176 ◽  
pp. 201-216
Author(s):  
Sami K. Solanki

The magnetic field of the Sun is mainly concentrated into intense magnetic flux tubes having field strengths of the order of 1 kG. In this paper an overview is given of the thermal and magnetic properties of these flux tubes, which are known to exhibit a large range in size, from the smallest magnetic elements to sunspots. Differences and similarities between the largest and smallest features are stressed. Some thoughts are also presented on how the properties of magnetic flux tubes are expected to scale from the solar case to that of solar-like stars. For example, it is pointed out that on giants and supergiants turbulent pressure may dominate over gas pressure as the main confining agent of the magnetic field. Arguments are also presented in favour of a highly complex magnetic geometry on very active stars. Thus the very large starspots seen in Doppler images probably are conglomerates of smaller (but possibly still sizable) spots.


2019 ◽  
Vol 33 (12) ◽  
pp. 1950113 ◽  
Author(s):  
I. M. Pazukha ◽  
Y. O. Shkurdoda ◽  
A. M. Chornous ◽  
L. V. Dekhtyaruk

A series of thin-film nanocomposites based on ferromagnetic metal Co and insulator SiO were prepared using an electron-beam method. The magnetoresistive and magnetic properties of these structures deposited at room temperature and then annealed to 700 K were investigated. The results showed that at the Co concentration 40 [Formula: see text]x [Formula: see text] 60 at.%, thin-film nanocomposites exhibit magnetoresistance (MR) that is conditional on spin-dependent tunnelling of electrons. This range of concentrations corresponds to the prepercolation area according to the magnetic investigations. For samples with x [Formula: see text] 70 at.%, the anisotropic character of MR peculiar to the homogeneous ferromagnetic materials appears. According to the magnetic properties study, this range of concentrations corresponds to the area after transition through the percolation threshold. The annealing process in temperature range from 300 K to 700 K in the magnetic field slightly influenced the magnetoresistive properties of the thin-film nanocomposites based on Co and SiO for all range of concentrations.


2015 ◽  
Vol 233-234 ◽  
pp. 419-422 ◽  
Author(s):  
Sergei S. Aplesnin ◽  
Maksim N. Sitnikov ◽  
Oksana B. Romanova ◽  
Evgeniy V. Eremin ◽  
Vladimir V. Sokolov ◽  
...  

The transport and magnetic properties of cation-substituted manganese sulphides CexMn1-ХS in the 4K - 450K temperature range in magnetic fields up to 90 kOe are studied. The hysteresis of curve magnetization for X=0.01 and nonlinear field behavior of the magnetization at X = 0.05, the sharp Curie temperature drop were found. The sharp maximum in the temperature dependence of resistivity was observed. The shift of the maximum temperature to low temperatures at cerium ion concentration increasing and in magnetic field was established. Model of orbital polaron for explanation of experimental datа was used.


1986 ◽  
Vol 89 ◽  
Author(s):  
M. Gorska ◽  
J. R. Anderson ◽  
Z. Golacki

AbstractThe magnetization and magnetic susceptibility of Bridgman-grown Pb1-xGdxTe have been measured over a temperature range from 2 to 300 K and in magnetic fields from 0.01 to 50 κOe. The x-values of the crystals ranged from 0.03 to 0.07. The magnetic susceptibility followed a Curie-Weiss behavior, χ = C/(T + θ), with positive θ implying an antiferromagnetic exchange interaction between Gd ions. The magnetic field dependence of the magnetization was fitted to a modified Brillouin function with parameter values that agreed fairly well with those from Curie-Weiss plots. The magnitude of θ was comparable to the value found for Pb1-xMnxTe for similar x values; but since the ion spin is bigger for Gd this suggests that the exchange interaction in Gd-doped PbTe is roughly half the value in Mn-doped PbTe.


2013 ◽  
Vol 200 ◽  
pp. 261-266
Author(s):  
Igor Virt ◽  
Igor Rudyi ◽  
Ivan Kurilo ◽  
Ivan Lopatynskyi ◽  
Marian Frugynskyi ◽  
...  

Structural and magnetic properties of ceramics Zn1-xCoxO and Zn1-xCrxO are studied. Average sizes of grains are determined by scanning electron microscopy. The magnetic field dependences of magnetic susceptibility are investigated by Faraday method. The relevant theoretical models are chosen.


2016 ◽  
Vol 251 ◽  
pp. 3-7 ◽  
Author(s):  
Egidijus Dragašius ◽  
Evguenia Korobko ◽  
Zoya Novikava ◽  
Elena Sermyazhko

Mechanical properties of polymer composite materials, containing ferromagnetic small dispersed particles of carbonyl iron that create structures along force lines of the magnetic field have been investigated. In paper the influence of the polymer matrix material and the orientation of ferromagnetic particles inside it on the properties of polymer composites are considered in the regimes of horizontal shear, vertical shear and periodical (sinusoidal) deformation of the samples. Magnetic properties at the change of magnetic field induction B in the range of 0 to 1 T are determined.


2011 ◽  
Vol 25 (07) ◽  
pp. 947-955 ◽  
Author(s):  
GJERGJ DODBIBA ◽  
KENJI ONO ◽  
HYUN SEO PARK ◽  
SEIJI MATSUO ◽  
TOYOHISA FUJITA

A MR suspension was prepared by dispersing silica-coated iron alloy particles into a liquid gallium. In other words, the iron alloy particles of 30 to 50 nm in diameter were first prepared and then coated with silica. Next, the particles were then suspended in a liquid Ga (assay: 99.9999%). In addition, the magnetic properties of the synthesized particles and suspension under the influence of the magnetic field were investigated. One of the main findings of this study is that the prepared powder showed a temperature sensitive of magnetization within the testing temperature range of 293–353 K. The saturation magnetization of silica-coated FeNbVB particles was about 0.55 T, whereas the saturation magnetization (297 K) of the synthesized MR suspension was 0.019 T.


2014 ◽  
Vol 620 ◽  
pp. 127-132
Author(s):  
Xiao Wen Xi ◽  
Shang Kun Ren ◽  
Li Hua Yuan

Using large finite element analysis (FEA) software ANSYS, the stress-magnetization effect on 20# steel specimens with different shape notches is simulated under the geomagnetic field and tensile load. With the stimulation, the magnetic flux leakage fields at certain positions of the surface specimen were measured. Through analysis the relationship between the magnetic flux leakage fields of certain points with tensile stress, the results showed that the magnetic field value at certain positions of specimen surface first decreases and then increases along with the increase of stress, which is called magnetization reversal phenomenon; Different gaps and different positions of the specimen show different magnetization reversal rules; By measuring the maximal variation of the magnetic field value △Hmax at certain positions of the surface specimen and by analyzing its change law, we can roughly estimate specimen stress size and distribution regularity of stress. Moreover, this article also discusses the effect of lifts-off of the probe on the law of stress magnetization.


Sign in / Sign up

Export Citation Format

Share Document