Electrical Characterisation of Epitaxial (100) CoSi2/Si Contacts Obtained Using a Ti/Co Bilayer

1993 ◽  
Vol 320 ◽  
Author(s):  
A. Lauwers ◽  
A. Vercaemst ◽  
M. Van Hove ◽  
K. Kyllesbech Larsen ◽  
R. Verbeeck ◽  
...  

ABSTRACTIn this paper the electrical properties of epitaxial CoSi2 on Si obtained by solid-state reaction of a Ti/Co bimetallic layer are investigated. Low temperature resistivity, magnetoresistance and Hall data are presented. The CoSi2ISi Schottky diodes are characterised by current - voltage and capacitance - voltage measurements at temperatures varying between - 100°C and 60°C.

1992 ◽  
Vol 242 ◽  
Author(s):  
J.W. Glesener ◽  
A.A. Morrish ◽  
K.A. Snail

ABSTRACTSchottky diodes were fabricated from boron doped diamond grown in a turbulent flame. The substrates used were type IIa diamond (100) crystals 1.5 mm in diameter and.25 mm thick. A p/p+ structure was deposited using the p+ layer as an ohmic contact. Current-voltage (I-V) and capacitance-voltage (C-V) measurements were made on the finished devices. An ideality factor of 1.8 was obtained from the I-V characteristics. Doping levels from C-V measurements indicate an acceptor concentration on the order of 5 × 1017/cm3.


2019 ◽  
Vol 48 (29) ◽  
pp. 11112-11121 ◽  
Author(s):  
Anees A. Aziz ◽  
Silvana Mercone ◽  
Ricardo P. S. M. Lobo ◽  
Anderson Dias ◽  
Roberto L. Moreira ◽  
...  

Dense single-phase 6L-Ba2CoTeO6 ceramics fabricated by the solid-state reaction method were employed to investigate the behaviour of the phonon modes and the mechanism driving the low-temperature antiferromagnetic transitions.


2008 ◽  
Vol 600-603 ◽  
pp. 619-622 ◽  
Author(s):  
Gaetano Izzo ◽  
Grazia Litrico ◽  
Lucia Calcagno ◽  
Gaetano Foti ◽  
Francesco La Via

The defects produced by irradiation with 7 MeV C+ induce a change in the electrical properties of 4H-SiC Schottky diodes. Capacitance-voltage and Current-voltage characteristics of the diodes fabricated in epilayers doped with different nitrogen concentrations were monitored before and after irradiation with different fluences. The Capacitance-voltage curves show free carrier compensation after low fluence irradiation and it was found that the reduction of carriers per ion induced vacancy increases with nitrogen content. The forward current-voltage characteristics of the diodes show an increase in the series resistance after irradiation. This change is mainly related to the high compensation occurring around the end of the ion range.


2016 ◽  
Vol 675-676 ◽  
pp. 527-530
Author(s):  
Thanatep Phatungthane ◽  
Kachaporn Sanjoom ◽  
Denis Russell Sweatman ◽  
Buagun Samran ◽  
Chamnan Randorn ◽  
...  

In the present work, strontium iron niobate SrFe0.5Nb0.5O3 ceramics doped with aluminum were synthesized by a solid-state reaction technique. Phase formation investigation by X-ray diffraction technique (XRD) revealed that all ceramics exhibited pure perovskite phase with orthorhombic symmetry. Grain size observed by electron microscopy (SEM) was found to increase with increasing sintering temperature. The electrical properties and related parameters of the ceramics were also measured. The ceramics exhibit very good dielectric behavior and have a significant potential for dielectric applications.


2018 ◽  
Vol 70 (3) ◽  
pp. 560-567 ◽  
Author(s):  
Jian Feng Li ◽  
Qin Shi ◽  
HeJun Zhu ◽  
ChenYu Huang ◽  
Shuai Zhang ◽  
...  

Purpose This paper aims to clarify the size and morphology of transition metal dichalcogenides has an impact on lubrication performance of Cu-based composites. This study is intended to show that Cu-based electrical contact materials containing Nb0.91Ti0.09Se2 have better electrical and tribological properties than those containing NbSe2. The tribological properties of Cu-based with different Ti-dopped NbSe2 content were also discussed. Design/methodology/approach The NbSe2 and Nb0.91Ti0.09Se2 particles were fabricated by thermal solid state reaction method. The powder metallurgy technique was used to fabricate composites with varying Nb0.91Ti0.09Se2 mass fraction. The phase composition of Cu-based composites was identified by X-ray diffraction, and the morphology of NbSe2/Nb0.91Ti0.09Se2 and the worn surface of composites were characterized by scanning electron microscopy and transmission electron microscopy. In addition, the tribological properties of composites were appraised using a ball-on-disk multi-functional tribometer. The data of friction coefficient and resistivity were analyzed and the corresponding conclusion was drawn. Findings In comparison with the pure copper, Cu-based composites containing Nb0.91Ti0.09Se2/NbSe2 had a lower friction coefficient, illustrating the Nb0.91Ti0.09Se2 with nano-size particles prepared in this work is a perfect choice for the fabrication of excellent electrical contact composites. Compared to composites with NbSe2, composites containing Nb0.91Ti0.09Se2 have better tribological and electrical properties. Research limitations/implications Because of the use of thermal solid state reaction method, the size of NbSe2 and Nb0.91Ti0.09Se2 is relatively large. Therefore, the fabrication of finer particles of Nb0.91Ti0.09Se2 is encouraged. Originality/value In this paper, the authors discuss the tribological and electrical properties of Cu-based composites, and the value of optimum obtained as Nb0.91Ti0.09Se2 content is 15 Wt.%.


1999 ◽  
Vol 572 ◽  
Author(s):  
W. C. Lai ◽  
M. Yokoyama ◽  
C. Y. Chang ◽  
J. D. Guo ◽  
J. S. Tsang ◽  
...  

ABSTRACTCopper Schottky diodes on n-type GaN grown by metal-organic chemical vapor deposition were achieved and investigated. Ti/Al was used as the ohmic contact. The copper metal is deposited by the Sputter system. The barrier height was determined to be as high as (ΦB =1.13eV by current-voltage (I-V) method and corrected to be ΦB =1.35eV as considered the ideality factor, n, with the value of 1.2. By the capacitance-voltage (C-V) method, the barrier height is determined to be ΦB =1.41eV. Both results indicate that the sputtered copper metal is a high barrier height Schottky metal for n-type GaN.


2008 ◽  
Vol 368-372 ◽  
pp. 265-267 ◽  
Author(s):  
Hui Zhu Zhou ◽  
Lei Dai ◽  
Yue Hua Li ◽  
Yin Lin Wu ◽  
Ling Wang ◽  
...  

Mg ion conductors, MgAl2O4 and MgZr4(PO4)6, were prepared by solid state reaction. Their electrical properties were measured and their application in electrochemical sensors for on-line determination of Mg in molten Al in the refining process and alloying process was examined. The activation energies for Mg ion conduction in MgAl2O4 and MgZr4(PO4)6 are 2.08 eV and 1.7 eV, respectively. The sensors have been found to respond rapidly to the change of Mg content in molten aluminium around 1000 K.


Sign in / Sign up

Export Citation Format

Share Document